Using Oracle Web
Application Server™
Cartridges

Release 3.0.1

ORACLE

Enabling the Information Age

Using Oracle Web Application Server™ Cartridges, 3.0.1
Copyright © Oracle Corporation 1996, 1998
All rights reserved. Printed in the U.S.A.

If you have not read this copyright page, you should read it in its entirety. If you have read this page, you can go to the Table
of Contents.

If you find any errors, omissions, or have any suggestions on how the information in this manual can be improved, please
e-mail owsdoc@us.oracle.com,

Primary Authors: Francisco Abedrabbo, Martin Gruber, Kennan Rossi, Livingston Schneider

Contributors: Seshu Adunuthula, Mala Anand, Tony Casacuberta, Mike Freedman, Magnus Lonnroth, Raymond Ng, Mu-
rugan Palaniappan, Robert Pang, Ankur Sharma

This software was not developed for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous ap-
plications. It is the customer’s responsibility to take all appropriate measures to ensure the safe use of such applications if the
programs are used for such purposes.

This software/documentation contains proprietary information of Oracle Corporation; it is provided under a license agree-
ment containing restrictions on use and disclosure and is also protected by copyright law. Reverse engineering of the soft-
ware is prohibited.

If this software/documentation is delivered to a U.S. Government Agency of the Department of Defense, then it is delivered
with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Use, duplication, or disclosure by the Government is subject to restrictions as set forth in sub-
paragraph (c)(1)(ii) of DFARS 252.227-7013, Rights in Technical Data and Computer Software (October 1988).

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

If this software/documentation is delivered to a U.S. Government Agency not within the Department of Defense, then it is
delivered with “Restricted Rights”, as defined in FAR 52.227-14, Rights in Data - General, including Alternate 111 (June 1987).

The information in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. Oracle Corporation does not warrant that this document is error-free.

REGISTERED TRADEMARKS of Oracle Corporation:

CASE Designer, CASE Dictionary, CASE Exchange, CASE Workshops, CoAuthor, ConText, Cooperative Development En-
vironment, Cooperative Server Technology, Datalogix, Easy*SQL, Express, GEMMS, NLS*WorkBench, Oracle, Oracle Alert,
Oracle Application Object Library, Oracle Book, Oracle Card, Oracle ConText, Oracle Financials, Oracle Glue, Oracle Leas-
ing, Oracle Media Objects, Oracle Media Server, Oracle Power Objects, Oracle Press, Oracle Procedural Gateway, Oracle Se-
cure Network Services, Oracle Transparent Gateway, OracleWare, Pro*Ada, Pro*COBOL, Pro*FORTRAN, Pro*Pascal,
Pro*PL/1, Pro*Rexx, Secure Network Services, SQL*Connect, SQL*Forms, SQL*Loader, SQL*Menu, SQL*Module,
SQL*Net, SQL*Plus, SQL*Report.

NON-REGISTERED TRADEMARKS of Oracle Corporation:

Advanced Networking Option, Advanced Replication Option, AIM Advantage, Alexandria, Alliance Online, Application
Agent, Architected Best in Class, Athenia, Better Decisions Made Simple, CASE Generator, Charlotte, CDM Advantage,
Content/2000, Corporate Planner Option,Database Server, DDE Manager, Des40, Designer/2000, Developer/2000, Discov-
erer, Dynamic Discovery Option, Easy*Query, Enabling the Information Age, End User Layer, Gist, Global Accounting En-
gine, Hyper*sSQL, Intelligent Data Manager, Internet Video Server, InterOffice, J/SQL, Live HTML, Media Talk, Network
Computing Architecture, Object Marketplace, ODP Pulse, ODP Techwire, Open/2000, Oracle Access, Oracle Access Man-
ager, Oracle Accounts Receivable, Oracle Advanced Benefits, Oracle Agents, Oracle Application Display Manager, Oracle
Applications, Oracle Applications Window Manager, Oracle Assets, Oracle Automotive, Oracle BASIC, Oracle Bills of Ma-
terial, Oracle Bookbatch, Oracle BookBuilder, Oracle Browser, Oracle Business Analysis, Oracle Business Manager, Oracle
Call Interface, Oracle Capacity, Oracle CASE, Oracle CDD/Administrator, Oracle CDD/Repository, Oracle Clinical, Oracle
CODASYL DBMS, Oracle Cooperative Applications, Oracle Cost Management, Oracle Data Browser, Oracle Data Query,
Oracle Departmental Server, Oracle DEVCONNECT, Oracle Developer Programme Pulse, Oracle Digital Library Solutions
Framework, Oracle Documents, Oracle EDI Ex*tender, Oracle EDI Gateway, Oracle Energy, Oracle Engineering, Oracle En-
terprise Interface Manager, Oracle Enterprise Manager, Oracle Enterprise Manager Performance Pack, Oracle Expert, Oracle
Expert Option, Oracle Express Administrator, Oracle Express Analyzer, Oracle Express Server, Oracle Financial Analyzer,
Oracle Financial Controller, Oracle Forms, Oracle Forms Generator, Oracle Foundation, Oracle GEMMS, Oracle General
Ledger, Oracle Government Financials, Oracle Government General Ledger, Oracle Government Human Resources, Oracle
Government Payables, Oracle Government Payroll, Oracle Government Purchasing, Oracle Government Receivables, Ora-
cle Government Revenue Accounting, Oracle Graphical Schema Editor, Oracle Graphics, Oracle Human Resource Manage-
ment Systems, Oracle Human Resources, Oracle Illustrated, Oracle Illustrated Series, Oracle Imaging, Oracle Incident,
Oracle Industries, Oracle Installer, Oracle InstantSQL, Oracle Integrator, Oracle Internet Commerce, Oracle Internet Server,
Oracle InterOffice, Oracle InterOffice Client, Oracle InterOffice Manager, Oracle InterOffice Server, Oracle Inventory, Ora-
cle Magazine, Oracle Magazine Interactive, Oracle Manufacturing, Oracle Master Scheduling, Oracle Master Scheduling/
MRP, Oracle Media Data Store, Oracle Media Library, Oracle Mission Control, Oracle Mobile Agents, Oracle Module Lan-
guage, Oracle MRP, Oracle MultiProtocol Interchange, Oracle Names, Oracle NetSolutions, Oracle Network Manager, Or-
acle Newsroom Manager, Oracle Object Marketplace, Oracle Objects, Oracle Office, Oracle Office Directory, Oracle Office
Mail, Oracle Office Manager, Oracle Office Scheduler, Oracle Online, Oracle Open Client Adapter, Oracle Open Gateways,
Oracle Open World, Oracle Order Entry, Oracle Parallel Server [or Oracle7 Parallel Server], Oracle Payables, Oracle Payroll,
Oracle Personal Time and Expense, Oracle Planner Workbench, Oracle PowerBrowser, Oracle Procedure Builder, Oracle
Process Modeller, Oracle Product Configurator, Oracle Project Accounting, Oracle Project Billing, Oracle Project Costing,
Oracle Projects, Oracle Public Sector, Oracle Purchasing, Oracle Quality, Oracle RALLY, Oracle Rdb7, Oracle Receivables,
Oracle Release Management, Oracle Replication Manager, Oracle Replication Services, Oracle Reports, Oracle Reports Gen-
erator, Oracle Repository Administrator, Oracle Revenue Accounting, Oracle RMU, Oracle Sales Analysis, Oracle Sales An-
alyzer, Oracle Sales and Compensation, Oracle Sales and Marketing, Oracle Sales Brief, Oracle Sales Compensation, Oracle
Server Generator, Oracle Server Manager, Oracle Smart Video, Oracle Store, Oracle System Sizer, Oracle SQL*Tutor, Oracle
SQL/Services, Oracle Supplier Scheduling, Oracle Supply Chain Planning, Oracle SupportNotes, Oracle Systems Designer,

ii Using Oracle Web Application Server™ Cartridges

Oracle Systems Modeller, Oracle Terminal, Oracle Text Server, Oracle TextServer3, Oracle Toolkit, Oracle TRACE, Oracle
TRACE Collector, Oracle TRACE Option, Oracle Training Administration, Oracle Translation Manager, Oracle Universal
Database, Oracle Upstream, Oracle Video Client, Oracle Video Server, Oracle Web Customers, Oracle Web Employees, Or-
acle Web Suppliers, Oracle WebServer, Oracle Work in Process, Oracle Workflow, Oracle Workgroup Server [or Oracle?
Workgroup Server], Oracle*Mail, Oracle7, Oracle7 Enterprise Backup Utility, Oracle7 Server, Oracle7 Spatial Data Option,
Oracle8, Oracle 64 Bit Option, Oracle/2000, PC Express, Personal Express, Personal Oracle [or Personal Oracle7], Personal
Oracle Lite, PJIM Advantage, PL/SQL, Profit, ProREXX, Pro*C, Pro*C/C++, Pro*REXX, Programmer/2000, ProRexx, RDB7,
Report Card, Security Without Compromise, Server/2000, Services/2000, Set-top/2000, Smart Application Client, Smart-
Box, SmartCharts, SmartClient, SmartHints, SmartLayout, SmartSpring, SmartStandards, SmartTab, SmartTriggers,
SQL*TextRetrieval, SQL*VDM, SupportAssistant, SupportNotes, SupportNews, The Oracle Network Builder, Trusted Or-
acle, Trusted Oracle7, Tutor, Video Client, Video Server, Web Request Broker, Workgroup/2000, World/2000.

SERVICE MARKS of Oracle Corporation:

BAP, Business Alliance Programme, CASE*Method, Cooperative Applications Initiative, International Oracle User's Group,
International Oracle User's Week, IOUG, IOUW, Migration Technology Initiative, OOW, Operations Readiness Assessment,
Oracle Alliance Program, Oracle Bronze, Oracle Business Alliance Programme, Oracle Consulting Services, Oracle Educa-
tion, Oracle Gold, Oracle Master, Oracle Mercury, Oracle Metals, Oracle Platinum, Oracle Service, Oracle Silver, Oracle Ster-
ling, Oracle SupportFax, Real Time Support Services, Systems Management Tools Initiative, Warehouse Technology
Initiative, Web System Initiative.

All other products or company names are used for identification purposes only, and may be trademarks of their respective
owners.

Adobe and Acrobat are trademarks of Adobe Systems Incorporated.

Java is a trademark of Sun Microsystems Incorporated

Netscape Navigator is a trademark of Netscape Corporation.

Oracle, SQL*Forms, SQL*DBA, SQL*Loader, SQL*Net andSQL*Plus are registered trademarks of Oracle Corporation.
PL/SQL, Oracle7, Web Request Broker, LiveHTML, Web Access Manager, Oracle Browser, Oracle Web Application Server,
Web Agent, Web Desktop, and Web Listener are trademarks of Oracle Corporation.

Alpha and Beta Draft Documentation Alpha and Beta Draft documentation are considered to be in prerelease status. This
documentation is intended for demonstration and preliminary use only, and we expect that you may encounter some errors,
ranging from typographical errors to data inaccuracies. This documentation is subject to change without notice, and it may
not be specific to the hardware on which you are using the software. Please be advised that Oracle Corporation does not
warrant prerelease documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this
documentation.

NOTICE
Copyright 1995 by: Massachusetts Institute of Technology (MIT), INRIA.

This W3C software is being provided by the copyright holders under the following license. By obtaining, using and/or
copying this software, you agree that you have read, understand, and will comply with the following terms and conditions.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee or roy-
alty is hereby granted, provided that the full text of this NOTICE appears on ALL copies of the software and documentation
or portions thereof, including modifications, that you make.

THIS SOFTWARE IS PROVIDED “AS IS,” AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRAN-
TIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, COPYRIGHT HOLDERS MAKE NO REP-
RESENTATION OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR
THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. COPYRIGHT HOLDERS WILL BEAR NO LIABILITY FOR ANY USE
OF THIS SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software
without specific, written prior permission. Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

CERN ACKNOWLEDGEMENT

This product includes computer software created and made available by CERN. This acknowledgment shall be mentioned
in full in any product which includes the CERN computer software included herein or parts thereof.

Oracle Web Application Server 3.0 contains encryption and/or authentication engines from RSA Data Security, Inc. Copy-
right 1996 RSA Data Security, Inc. All rights reserved.

All other products or company names are used for identification purposes only, and may be trademarks of their respective
owners.

iii Using Oracle Web Application Server™ Cartridges

Using Oracle Web Application Server™ Cartridges

e
Contents

Chapter 1 Using the PL/SQL Cartridge. 1-1
OVBIVIBW. . . ottt 1-3
Tutorial ... 1-5
Packages OVerVIEW i e 1-9
INVOCALION 1-14
Life Cycle of the PL/SQL Cartridge.., 1-15
Supported Data TYPES . . .ot 1-16
Overloading 1-16
Variables with Multiple Values. L. 1-17
NLS EXIENSIONS . . oot e e 1-20
PL/SQL Cartridge and Applets ... 1-21
TranSacCtionso 1-21
SeSSIONS/COOKIES.o 1-24
Customized Extensions to HTP and HTF Packages. 1-24
String Matching and Manipulation 1-25
I X 1-28
Error-Reporting Levels. 1-29
Authenticationand Security 1-29
Dynamic Username/Password Authentication...................... 1-30
Custom Authentication. i 1-31
Performance 1-33
Troubleshooting. 1-34
Chapter 2 UsingtheJavaCartridge i 2-1
OVBIVIBW. . . ottt 2-2
Developing Web Applicationsindava............. 2-4
Tutorial ... 2-6
Developer'sGuide. 2-8
Troubleshootingand Debugging, 2-34
EXamples. ... 2-37
Chapter 3 Using the LiveHTML Cartridge.o i 3-1
OVBIVIBW. . . ottt 3-1
LiveHTML Commands.t e 3-3
LiveHTML Examples e 3-7
Chapter 4 Usingthe Perl Cartridge i i 4-1
OVBIVIBW. . . ottt 4-2

Tutorial 4-3

Configuration. 4-6

INVOCALIONo 4-8
Writing Perl Scripts for the Perl Cartridge 4-9
Developing Perl Extension Modules 4-12
Troubleshooting. 4-12
Appendix A The htpand htf Packages i A-1
htp.address. A-5
htp.anchor, htp.anchor2 A-6
htp.appletopen, htp.appletclose i A-7
Ntp.area A-8
htp.base. A-9
htp.basefont A-10
htp.bgsound A-11
NP bIg . . A-12
htp.blockquoteOpen, htp.blockquoteClose. A-13
htp.bodyOpen, htp.bodyClose i, A-14
htp.bold. A-15
htp.center A-16
htp.centerOpen, htp.centerClose. i, A-17
Ntp.CIte. . A-18
htp.code. A-19
htp.comment A-20
htp.dfn. . A-21
htp.dirlistOpen, htp.dirlistClose i i, A-22
DIV . A-23
htp.dlistOpen, htp.dlistClose. i, A-24
htp.dlistDef. A-25
htp.dlistTermo A-26
htp.emphasis, htp.em A-27
htf.escape _SC. A-28
htf.escape_Url. A-29
htp.fontOpen, htp.fontClose i i, A-30
htp.formCheckboX. A-31
htp.formOpen, htp.formClose. i, A-32
htp.formHidden. A-33
htp.formimage A-34
htp.formPassword. A-35
htp.formRadio A-36
htp.formReset. A-37
htp.formSelectOpen, htp.formSelectClose. A-38
htp.formSelectOption i A-39
htp.formSubmit A-40
htp.formText. A-41
htp.formTextarea, htp.formTextarea2 A-42
htp.formTextareaOpen, htp.formTextareaOpen2, htp.formTextareaClose A-43
htp.frame. A-44
htp.framesetOpen, htp.framesetClose A-45
htp.headOpen, htp.headClose. i, A-46
htp.header. A-47
htp.htmlOpen, htp.htmlIClose o A-48
htp.img, htp.img2 A-49
htp.asindex A-50
htpatalic A-51
htp.keyboard, htp.kbd A-52

vi Using Oracle Web Application Server™ Cartridges

htp.line, htp.hr ... A-53

htplinkRel A-54
htp linkReV A-55
htp.listHeader. A-56
htp.listingOpen, htp.listingClose A-57
htpdistitem A-58
htpmailto A-59
htp.mapOpen, htp.mapClose. i A-60
htp.menulistOpen, htp.menulistClose A-61
htp.meta A-62
htp.nl, htp.br. .. A-63
Ntp.NObr. . A-64
htp.noframesOpen, htp.noframesClose. A-65
htp.olistOpen, htp.olistClose i i, A-66
htp.para, htp.paragraph o A-67
htp.param A-68
htp.plaintext A-69
htp.preOpen, htp.preClose. i A-70
htp.print, Ntp.prn. ... A-71
htp.prints, NtP.PS A-72
NP . A-73
htp.sample A-74
NEP.SCriPL. . o A-75
htp.small A-76
Ntp.Strike. .. A-T7
NEP.SIrONG . . .o A-78
htp.style. . . A-79
Ntp.SUb. .. A-80
NEP.SUP. . A-81
htp.tableCaption A-82
htp.tableData A-83
htp.tableHeader A-84
htp.tableOpen, htp.tableClose i, A-85
htp.tableRowOpen, htp.tableRowClose. A-86
htp.teletype. . ..o o A-87
htp.title ... A-88
htp.ulistOpen, htp.ulistClose. o i, A-89
htp.underline A-90
htp.variable. A-91
NP Wb L A-92
Appendix B The owa_cookie Package. i B-1
owa_cookie.cookie datatype. B-2
owa_cookie.getfunction. B-3
owa_cookie.get_all procedure. B-4
owa_cookie.remove procedure B-5
owa_cookie.send procedure. B-6
Appendix C Theowa imagePackage e C-1
owa_image.NULL_POINT package variable C-2
owa_image.pointdatatypeo C-3
owa_image.get xfunction............ C-4
owa_image.get yfunction.......... C-5

vii Using Oracle Web Application Server™ Cartridges

Appendix D

Appendix E

Appendix F

Appendix G

Appendix H

The owa_opt_lock Package. i i D-1
owa_opt_lock.vcArray datatype D-2
owa_opt_lock.checksum function. D-3
owa_opt_lock.get_rowid function oL D-4
owa_opt_lock.store_values procedure. D-5
owa_opt_lock.verify_values function. D-6
The owa_pattern Package i i E-1
owa_pattern.amatch function i E-2
owa_pattern.change function and procedure E-4
owa_pattern.getpat procedure E-6
owa_pattern.match function E-7
owa_pattern.patterndatatype ... E-9
Theowa secPackage. e e F-1
owa_sec.get _client_hostname function F-2
owa_sec.get _client_ipfunction i F-3
owa_sec.get_password function i F-4
owa_sec.get user_idfunction............... e F-5
owa_sec.set_authorization procedure i F-6
owa_sec.set_protection_realm procedure oL F-7
Theowa textPackage e e G-1
owa_textadd2multi procedure. G-2
owa_textmulti_linedatatype........ ... G-3
owa_text.new row list........ G-4
owa_text.print_multi procedure G-5
owa_text.print_row_listprocedure. i G-6
owa_text.row_listdatatype. G-7
owa_text.stream2multi procedure G-8
owa_text.vc arrdatatype G-9
Theowa utilPackage i H-1
owa_util.bind_variablesfunction................. H-3
owa_util.calendarprint procedure i H-4
owa_util.cellsprintprocedure H-5
owa_util.choose_date procedure. H-6
owa_util.dateTypedatatype.t H-8
owa_util.get_cgi_envfunction............... i H-9
owa_util.get_owa_service_path function H-10
owa_util.get_procedure function i H-11
owa_util.http_header_close procedure, H-12
owa_util.ident_arrdatatype i H-13
owa_util.ip_addressdatatype.c. i H-14
owa_utillistprintprocedure H-15
owa_util.mime_header procedureo H-16
owa_util.print_cgi_env procedure H-17
owa_util.redirect_url procedure H-18
owa_util.showpage procedure i H-19
owa_util.showsource procedure. i H-20
owa_util.signature procedure H-21
owa_util.status_line procedure. i H-22

viii Using Oracle Web Application Server™ Cartridges

owa_util.tablePrintfunction H-23
owa_util.todate function. H-26
owa_util.who_called_meprocedure.......... H-27

iX Using Oracle Web Application Server™ Cartridges

Using Oracle Web Application Server™ Cartridges

CHAPTER

Using the PL/SQL Cartridge

The PL/SQL Cartridge provides the environment for developing Web applications as
PL/SQL procedures stored in an Oracle database server. (PL/SQL is Oracle
Corporation’s procedural language extension to SQL, the standard data access
language for relational databases.)

Contents

= Overview

= Tutorial

< Packages Overview

= Invocation

e Life Cycle of the PL/SQL Cartridge
e Supported Data Types

< Overloading

< Variables with Multiple Values

= NLS Extensions

e PL/SQL Cartridge and Applets

= Transactions

= Sessions/Cookies

= Customized Extensions to HTP and HTF Packages
e String Matching and Manipulation
 ICX

< Error-Reporting Levels

< Authentication and Security

< Dynamic Username/Password Authentication

e Custom Authentication
= Regular Expressions
e Performance

< Troubleshooting

Using the PL/SQL Cartridge 1-2 Using Oracle Web Application Server™ Cartridges

Overview

The PL/SQL Cartridge enables Web users to connect to Oracle7 database servers. In
each HTTP request for the PL/SQL Cartridge, the URL specifies the PL/SQL Agent
(which contains connection information) and the name of the stored procedure to run.
The URL can also contain values for any parameters required by the stored procedure.
Figure 1-1 shows the parts of a URL:

Figure 1-1: Breakdown of a URL for the PL/SQL Cartridge

http://www.acme.com/public/plsgl/get_emp?fname="chris’

Domain I Stored Parameter for
PL/SQL Agent procedure proeedure

Virtual path for
PL/SQL Cartridge

The following events occur when the Web Application Server receives a request (see
Figure 1-2):

1. The Listener component of the Web Application Server receives the request from
a client, and determines who should handle it. In this case, it forwards the
request to the Web Request Broker (WRB) since the request is for a cartridge.

2. The WRB routes the request to an available PL/SQL Cartridge.

3. The PL/SQL Cartridge retrieves the name of the PL/SQL Agent from the
request, and uses the agent’s configuration values to determine to which
database server to connect and how to set up the PL/SQL client configuration.
You can define many PL/SQL Agents, each with different configuration
information.

4. Using the PL/SQL Agent’s configuration values, the PL/SQL Cartridge
connects to the database, prepares the call parameters, and invokes the
procedure in the database.

5. The procedure generates the HTML page, which can include dynamic data
accessed from tables in the database as well as static data.

6. The output from the procedure is returned via the response buffer back to the
PL/SQL Cartridge and the client.

When connecting to a database, the PL/SQL Cartridge uses configuration information
from two sources: a PL/SQL Agent and a Database Access Descriptor (DAD). Like the
PL/SQL Agent,a DAD is a named set of configuration values used for database access.
Each PL/SQL Agent is associated with a DAD.

A DAD specifies information such as the database name or the SQL*Net V2 service
name, the ORACLE_HOME directory, and NLS configuration information such as
language, sort type, and date language. You can also specify username and password
information in a DAD,; if they are not specified, the user will be prompted to enter a
username and password when the URL is invoked.

The PL/SQL Agent specifies information such as which DAD to use, how much error
information to return if an error occurs, a list of authorized ports that it can use, and
transaction parameters.

Using the PL/SQL Cartridge 1-3 Using Oracle Web Application Server™ Cartridges

The connection information is divided into PL/SQL Agents and DADs so that multiple
agents can use the same DAD. This enables you to define a DAD for each database to
which you want to connect, since it is the DAD that specifies the database. The only
difference is in the configuration of the PL/SQL Agent. For example, the level of error
information that is returned and transaction parameters.

Figure 1-2: Connecting to an Oracle7 Server using the PL/SQL Cartridge

leb Application Server

The Web Application Server comes with the Web Application Server Manager, which
isaset of HTML forms you use to configure the PL/SQL Cartridge, the PL/SQL Agent,
and the DAD. On these forms you enter information such as virtual paths for the
PL/SQL Cartridge, the SQL*Net V2 service name for the DAD, and the error reporting
level for the PL/SQL Agent.

When you configure the PL/SQL Cartridge, you install packages that help generate
HTML pages. These packages define procedures, functions, and data types that you
can use in your stored procedures.

When designing your Web applications, you must consider security issues. You have
to design your application such that unauthorized users do not have access to the
application, and authorized users can run the application only in the proper context.
See “Authentication and Security” for details.

Note: To users familiar with the PL/SQL Cartridge prior to Web Application Server version
3.0: Prior to version 3.0, the PL/SQL Agent configuration information was kept with
the DAD information, and this combined information was called a Database
Connection Descriptor (DCD). In version 3.0, this configuration information has been
separated into PL/SQL Agent and DAD because other cartridges needed to use
configurable connect information (DADSs) independent of the configuration
information specific to the PL/SQL Cartridge.

Using the PL/SQL Cartridge 1-4 Using Oracle Web Application Server™ Cartridges

Tutorial

This section provides a step-by-step guide on creating and invoking a simple Web
application. The application is a stored procedure that calls functions and procedures
defined in the PL/SQL Cartridge packages to display the contents of a database table
as an HTML table.

This tutorial steps you through the following tasks:

1. Installing the PL/SQL Cartridge Packages and Creating a DAD
2. Configuring the PL/SQL Agent

3. Checking the Virtual Path Mapping

4. Stopping and Restarting the Listener

5. Creating and Loading the Stored Procedure onto the Database
6. Creating an HTML Page to Invoke the Procedure

This tutorial assumes the following:

= You can log in as the “admin” user for the Web Application Server. This is
required because you will be adding new settings to the configuration of the
server.

= You have the “scott” schema on your database. This tutorial installs the PL/SQL
Cartridge packages in this schema. If you don’t have the “scott” schema, you can
use an existing schema on your database, or you can create the “scott” schema
using the “CREATE SCHEMA” command.

A schema can be thought of as a user account: it is a collection of database objects
such as tables, views, procedures, and functions, and each object in the schema
can access other objects in the same schema.

1. Installing the PL/SQL Cartridge Packages and Creating a DAD

Before you can use the PL/SQL Cartridge, you need to install the PL/SQL Cartridge
packages in the schema from which you will be running the procedure. This tutorial
uses the “scott” schema.

To install the packages, you create a Database Access Descriptor (DAD). A DAD
specifies connection information such as the database to which you want to connect,
and the username and password to use to log into the database. You will use this same
DAD later to run your stored procedure.

1. Start up your browser and go to the Web Application Server home page. The
URL looks like:

http:// your_machine_name [

2. Click Web Application Server Manager to go to the Web Application Server
Administration home page.

3. Click Oracle Web Application Server to see more Administration options.
4. Click DAD Administration to go to the Database Access Descriptor page.
5. Click Create New DAD.

Using the PL/SQL Cartridge 1-5 Using Oracle Web Application Server™ Cartridges

6. On the Create New DAD page, fill in these fields:

Field Value Description

DAD Name scotts The name that identifies the DAD
Database User scott The schema name

Identified by Password Information on the database user is

stored in the database

Database User Password | tiger The password for scott
and
Confirm Password

ORACLE_HOME Example: The directory that contains the files
/private/app/ for your Oracle7 database server
oracle/product

/7.3.2

ORACLE_SID The name of the database to which

or to connect

SQL*Net V2 Service Specify the name of ORACLE_SID
if the database server is running on
your machine.
Otherwise, use the SQL*Net
connect string (for example,
wdk7322).

Database Role Default This field is used in the context for
Content Service only.

NLS fields Leave blank.

Store the user name and | Select this option.
password in the DAD

Table 1-1: values for DAD

7. Click the Submit New DAD button.

2. Configuring the PL/SQL Agent

After you have created a DAD and installed the packages, you need to create a PL/SQL
Agent to associate with the DAD. A PL/SQL Agent uses the connection information in
the associated DAD to connect to the database server, and it also specifies the amount
of error information to return to the client.

1. Click the Cartridge button on the bottom of the page to go to the Cartridge
Administration page.

2. Click PLSQL to go to the PL/SQL Agent Administration page.
3. Click Create New PL/SQL Agent.

Using the PL/SQL Cartridge 1-6 Using Oracle Web Application Server™ Cartridges

4. Enter these values for the fields:

5.

Field Value Description

Name of agentScott The name that identifies the

PL/SQL Agent PL/SQL Agent

Name of DADto | scotts The DAD to associate with the

be used PL/SQL Agent

Protect PL/SQL TRUE

Agent

Authorized Ports | Example: The port at which your Listener is
7777 listening

HTML Error Leave blank.

Page

Error Level Leave blank.

DAD Username Leave blank.

DAD Password Leave blank.

Click Submit New Agent.

This could take some time as the packages are loaded into scott’s schema.

3. Checking the Virtual Path Mapping

After you have created a DAD and a PL/SQL Agent, the Web Application Server
creates a new virtual path mapping to the new PL/SQL Agent. The Dispatcher will
direct URLSs that specify this virtual path to your DAD. You can change this mapping
if you like.

To see the new virtual path:

1.

Using the PL/SQL Cartridge

Click the WRB button on the bottom of the page to go to the Web Request Broker
Administration page.

Click Applications and Directories on the left side.

There should be a row that contains \agentScott\plsq| in the “Virtual Path”
column, PLSQLin the “App” column, and %ORAWEB_HOME%\hin the
“Physical Path”” column.

The first element, agentScott , names the PL/SQL Agent to use for this
request. The second element, PLSQL, merely indicates to the user that the
request is for the PL/SQL Cartridge.

PLSQLis the symbol for the PL/SQL Cartridge. The virtual paths for the PLSQL
rows cause the Web Request Broker to send the request to the PL/SQL
Cartridge.

The physical path specifies the directory where the Web Request Broker looks
for shared libraries to load the cartridge.

1-7 Using Oracle Web Application Server™ Cartridges

4. Stopping and Restarting the Listener

After reconfiguring the Web Application Server, you have to stop and restart the Web
Listener for the new configuration to take effect.

1. Click the Listener button on the bottom of the page to go to the Oracle Web
Listener Administration page.

2. Click Stop to stop the Listener process.

3. Click Start to restart the Listener process.

5. Creating and Loading the Stored Procedure onto the Database

To create and load the current_users procedure (defined below) onto the database,
save the text of the procedure in a file, and then run Oracle Server Manager to read and
execute the statements in the file.

1. Type the following lines and save it in a file called current_users.sql . The
current_users procedure retrieves the contents of the all_users table and
formats it as an HTML table.

create or replace procedure current_users
AS
ignore boolean;
BEGIN
htp.htmlopen;
htp.headopen;
htp.title(‘Current Users’);
htp.headclose;
htp.bodyopen;
htp.header(1, ‘Current Users’);
ignore := owa_util.tableprint(‘all_users’);
htp.bodyclose;
htp.htmiclose;
END;
/
show errors

This procedure uses functions and procedures in the htp and owa_ util
packages to generate the HTML page. For example, the htp.htmlopen
procedure generates the string <html> , and htp.title('Current Users")
generates <title>Current Users</title>

The owa_util.tablePrint function queries the specified database table, and
formats the contents as an HTML table.

2. Start up Server Manager in line mode. ORACLE_HOME is the directory that
contains the Oracle7 database server files.

% $ORACLE_HOME/bin/svrmgrl (UNIX)
> %ORACLE_HOME%\bin\svr,grl (MT)

3. Connect to the database as “scott”. The password is “tiger”.
SVRMGR> connect scott/tiger

4. Load the current_users stored procedure from the current_users.sql
file. You need to provide the full path to the file if you started up Server Manager
from a directory different than the one containing the current_users.sql
file.

Using the PL/SQL Cartridge 1-8 Using Oracle Web Application Server™ Cartridges

SVRMGR> @
Name of script file: current_users.sql

5. Exit Server Manager.
SVRMGR> exit

6. Creating an HTML Page to Invoke the Procedure
To run the current_users procedure, type in the following URL in your browser:
http:// your_machine_name /[agentScott/plsql/current_users

It is more common, however, to invoke the procedure from an HTML page. For
example, the following HTML page has a link that calls the URL.

<HTML>
<HEAD>
<title>Current Users</title>
</HEAD>

<BODY>

<H1>Current Users</H1>

<p>Ru
n current_users

</BODY>
</HTML>

Figure 1-3 shows the source page (the page containing the link that invokes the stored
procedure), and the page that is generated by the current_users stored procedure.

Figure 1-3: The source page and the dynamically generated page in the tutorial

The source page The page generated by the current_users procedure

Current Users Current Users

Bun current users

USERNAME USER ID CREATED

\ 4

33 0 21-JAN-97
STITEM 5 21-JAN-97
WwhW_USER 11 a7 - JAN-97
TRACESYE 8 21-JAN-97
SCOTT 9 21-JAN-97
WWhW_DBA 10 a7 - JAN-97
LEHCOCELL 12 04-FEE-97

Packages Overview

Before you can use the PL/SQL Cartridge, you need to load the packages listed in this
section into the database schemas from which you want to run the procedures. The
packages define data types, functions, and procedures that are used by the cartridge,

Using the PL/SQL Cartridge 1-9 Using Oracle Web Application Server™ Cartridges

and you can use some of these in your Web application. The functions and procedures
help you generate dynamic HTML pages that contain data retrieved from the database.

The packages are designed to be used in two ways:

= Store HTML pages in the database and update the dynamic parts when the page
is requested.

= Generate the entire page dynamically from scratch.

Installing the PL/SQL Web Toolkit

To install the PL/SQL Web Toolkit, use the PL/SQL Agent administration forms. For
details on these forms, see “Web Application Server Manager”. The installation
procedure:

« Grants the CONNECT and RESOURCE roles to the database user. For more
information onroles, see “GRANT (roles)” in Chapter 4 of the Oracle7 Server SQL
Reference.

= Executes the SORAWEB_HOME/admin/owains.sql script, which installs the
packages in the PL/SQL Web Toolkit. If run manually, the script should be run
from SQL*DBA or from Server Manager. If you want to run it from SQL*Plus,
see the header of the script for instructions.

The packages are installed in the user’s schema. This ensures that the user cannot use
the subprograms in the packages to access data in another user’s schema.

htf and htp Packages

The htp (hypertext procedures) package contains procedures that generate HTML
tags, or text surrounded by HTML tags. For instance, the htp.anchor procedure
generates the HTML anchor tag (<A>). The htp procedures can be grouped into the
following categories:

= Structure procedures set up the major parts of the HTML document.

= Head-related procedures are used in the <HEAD>section of your HTML
document. The HTML tags generated by these procedures should be placed
between the tags generated by the htp.headOpen and htp.headClose

= Print procedures are used with htf functions to generate a string in the HTML
document being constructed. They can also be passed hard-coded text that
appears in the HTML document as-is. The generated text is passed to the
PL/SQL Agent, which sends it to the user’s browser.

You can use these procedures to generate “custom” HTML, that is, HTML that
is not in the official specification. You enter the desired HTML markup and text
that you want to generate by passing it to the procedures in the text buffers. This
places the text verbatim in the web page you are generating.

= Body procedures are used in the <BODY>section of your HTML document. They
can format paragraphs, and allow you to add comments, anchors, and images to
your document.

= List procedures allow you to display information in lists:

- Ordered lists have numbered items
- Unordered lists have bullets to mark each item

Using the PL/SQL Cartridge 1-10 Using Oracle Web Application Server™ Cartridges

Note:

owa Package

owa_init Package

- Definition lists alternate a term with its definition

= Character procedures are used to specify or alter the appearance of the marked
text. Character format tags have opening and closing elements, and affect only
the text that they surround.

Character format tags give hints to the browser as to how a character or character
string should appear, but each browser determines its actual appearance.
Essentially, they place text into categories such that all text in a given category is
given the same special treatment, but the browser determines what that
treatment is. For example, the HTML string Here is some
text might appear bold in some browsers, and italics in others.

If a specific text attribute, such as bold is desired, a physical format tag may be
necessary.

= Physical markup procedures specify the format of the marked text. For example,
you can explicitly direct the browser to render the text in a specific font size.

= Form procedures are used to create and manipulate HTML forms, which allow
interactive data exchange between a web browser and a CGI program or WRB
cartridge. Forms can have the following types of elements:

- Input elements, which are used for a large variety of types of input fields.
Examples of input elements include single line text fields, single line
password fields, checkboxes, radio buttons, and submit buttons.

- Text area elements, which are used to create a multi-line input field.

- Select elements, which are used to allow the user to choose one or more of
a set of alternatives described by textual labels. Usually rendered as a
pulldown, pop up, or a fixed size list.

« Table procedures insert HTML tables in a document.

The htf (hypertext functions) package contains the function version of the procedures
in the htp package. The function versions in the PL/SQL Web Toolkit do not directly
generate output in your Web page. Instead, they pass their output as return values to
the statements that invoked them.

To print the output of htf functions, call them from within the htp.print procedure,
which simply prints its parameter values to the generated Web page. The advantage
of using the functions is that you can nest calls.

To look up htf functions, see the entry for the corresponding htp procedures. The
string listed under “Generates” is the return value of the function.

This package contains functions and procedures required by the PL/SQL Cartridge.

This package contains functions and procedures that initialize the cartridge. It also
provides constants that you override to set the time zone used by cookies. Cookies use
expiration dates defined in Greenwich Mean Time (GMT). If you are not on GMT, you
can specify your time zone using one of these two constants:

= If your time zone is recognized by Oracle, you can specify it directly using
dbms_server_timezone . The value for this is a string abbreviation for your

Using the PL/SQL Cartridge 1-11 Using Oracle Web Application Server™ Cartridges

owa_sec Package

owa_util Package

owa_text Package

owa_pattern Package

owa_image Package

time zone. See chapter 3 of the Oracle7 Server SQL Reference under “SQL
Functions” for a list of recognized time zones.

dbms_server_timezone constant varchar2(3) := ‘PST’

= |f your time zone is not recognized by Oracle, use dbms_server_gmtdiff to
specify the offset of your time zone from GMT. Specify a positive number if your
time zone is ahead of GMT, otherwise negative.

dbms_server_gmtdiff constant number := NULL

After making the appropriate changes, you need to reload the package.

This package contains functions and procedures used by the cartridge for
authenticating requests.

This package contains utility procedures and functions. It is divided into the following
areas:

e OWA _UTIL HTML Utilities - The purposes of these range from printing a
signature tag on HTML pages to retrieving the values of CGI environment
variables and performing URL redirects.

e OWA _UTIL Dynamic SQL Utilities - These enable you to produce Web pages
with dynamically generated SQL code.

e OWA _UTIL Date Utilities - These make it easier to properly handle dates, which
are simple strings in HTML, but are properly treated as a data type by the Oracle
RDBMS.

This package contains procedures, functions, and data types used by OWA_PATTERN
for manipulating large data strings. They are externalized so you can use them directly.

This package contains procedures and functions that you can use to perform string
matching and string manipulation with regular expression functionality.

This package contains data types and functions that you use to get the coordinates of
where the user clicked on an image. You use this when the user clicks an image, and
the location where the user clicked invokes the PL/SQL Cartridge. Your procedure
would look something like:

create or replace procedure process_image (my_img in owa_image.point)
X integer ;= owa_image.get_x(my_img);
y integer := owa_image.get_y(my_img);

begin
[* process the coordinate */

end

Using the PL/SQL Cartridge 1-12 Using Oracle Web Application Server™ Cartridges

owa_cookie Package

This package contains data types, procedures, and functions that enable you to send
HTTP cookies to and get them from the client’s browser. HTTP cookies are opaque
strings sent to the browser to maintain state between HTTP calls. State can be
maintained throughout the client’s session, or longer if an expiration date is included.
Your system date is calculated with reference to the information specified in the
owa_init package.

owa_opt_lock Package

This package contains functions and procedures that enable you to impose database
optimistic locking strategies, so as to prevent lost updates.

Since HTTP is a stateless protocol, conventional database locking schemes cannot be
used directly. The owa_opt_lock package works around this by giving you a choice of
two ways of dealing with the lost update problem: the problem caused if a user selects
and then attempts to update a row whose value has been changed in the meantime by
another user. The two techniques this package provides are as follows:

= The hidden fields method - This stores the previous values in hidden fields in the
HTML page. When the update is performed, it checks these values against the
current state of the database. This is implemented with the procedure
owa_opt_lock.store_values procedure.

= The checksum method - This stores a checksum rather than the values
themselves. This is implemented with the owa_opt_lock.checksum function.

Both of these techniques are “optimistic”. That is, they do not prevent other users from
performing updates, but reject the current update if an intervening update has
occurred.

Parameters Passed into Procedures and Functions

All parameters passed into a hypertext procedure or function are of data type
VARCHAR?2, INTEGER, or DATE. The data type is indicated by the first letter of the
parameter’s name: “c” for VARCHARZ2, “n” for INTEGER, and “d” for DATE. For
example:

cname in varchar2

The “c” in cname indicates a character data type (VARCHAR?2).
nsize in integer

The “n” in nsize indicates a number data type (INTEGER).
dbuf in date

The “d” in dbuf indicates a DATE data type.

A vertical bar (]) in the syntax diagram means “or”.

Many HTML 3.0 tags have a large number of optional attributes that, if passed as
individual parameters to the hypertext procedures or functions, would make the calls
cumbersome. In addition, some browsers support non-standard attributes. Therefore,
each hypertext procedure or function that generates an HTML tag has as its last
parameter cattributes, an optional parameter. This parameter enables you to pass the
exact text of the desired HTML attributes to the PL/SQL procedure.

Using the PL/SQL Cartridge 1-13 Using Oracle Web Application Server™ Cartridges

For example, the syntax for htp.em is:
htp.em (ctext, cattributes);

A call that uses HTML 3.0 attributes might look like the following:
htp.em('This is an example’,'ID="SGML_ID” LANG="en™);

which would generate the following:

<EM ID="SGML_ID” LANG="en">This is an example

Invocation

To invoke the PL/SQL Cartridge, the URL must be in the following format:

http://host_and_domain_name[:port]/virtual_path/
[package.]proc_name[?QUERY_STRING]

where:

= host_and_domain_name specifies the domain and machine where the Web server
is running.

= port specifies the port at which the Web server is listening. If omitted, port 80 is
assumed.

= virtual_path specifies a virtual path mapped to the PL/SQL Cartridge. The first
element in the path specifies the PL/SQL Agent to use. For example, if the
virtual path is “/public/plsqgl”, the PL/SQL Agent named public ~ will be used
to handle this request. At the very least, you need to specify a PL/SQL Agentin
the virtual path.

= package specifies the package (if any) that contains the procedure. If omitted, the
procedure is standalone.

= proc_name specifies the stored procedure to run. This cannot be a stored function.

= QUERY_STRING specifies parameters (if any) for the stored procedure. The
string follows the format of the GET method. For example, multiple parameters
are separated with the & character, and space characters in the values to be
passed in are replaced with the + character. If you use HTML forms to generate
the string (as opposed to generating the string yourself), the formatting will be
done automatically for you.

For example, if a browser sends the following URL:

http://www.acme.com:9000/hr/plsql/
get_emp?fname="john’&lname="doe’&role="office+manager’

the web server running on www.acme.com and listening at port 9000 would handle
the request. When the Listener receives the request, it passes the request to the WRB
because it sees that the /hr/plsql virtual directory is configured to call the PL/SQL
Cartridge. The WRB then starts up an instance of the PL/SQL Cartridge with the
PL/SQL Agent named hr . The instance connects to the database using the DAD
associated with the Agent and runs the get_emp stored procedure. The fname
parameter of the procedure gets the value john , the Iname parameter gets the value
doe, and the role parameter gets the value “office manager . The space character
is put back in before the stored procedure sees the value.

Using the PL/SQL Cartridge 1-14 Using Oracle Web Application Server™ Cartridges

You need not be concerned with the order in which PL/SQL parameters are given in
the URL or the HTTP header, since the parameter name is specified. An exception to
this rule is when you have multiple parameters of the same name; this might happen
if you have an HTML form that contains multiple elements with the same name. In this
case, the parameter is passed to the PL/SQL procedure as a PL/SQL table. See
“Variables with Multiple Values” for details.

Life Cycle of the PL/SQL Cartridge

This section describes what the PL/SQL Cartridge does when it receives a request.
This section assumes knowledge of the callback functions used by the Web Request
Broker (WRB). These functions are described in “Callback Functions in a Web
Cartridge”.

You do not need to know the information in this section in order to use the PL/SQL
Cartridge. However, this information is useful if you want to optimize the
performance of the cartridge, or want to know the architecture of the cartridge.

When a request comes in for the PL/SQL Cartridge, the Init callback function is
executed. The Init function:

< loads all the PL/SQL Agents
= establishes connections to unique databases specified by the PL/SQL Agents

= logson to databases if username/password information is provided in the DAD.
Information required for the initialization process (such as database character set
and authorization scheme) is also loaded at this time.

The Authorize callback function is executed when the PL/SQL Agent needs to
authorize the URL request. The Authorize function:

= checks if the requested object is protected under any authorization schemes or
restrictions

= checks the authorization level set in the owa_sec package to determine if custom
authentication is specified (See “Authentication and Security” for details on
custom authentication.)

- If custom authentication is specified, the custom PL/SQL function that
authenticates the user is executed.

< logs into the database if custom authentication succeeds and the DAD contains
username and password information

If the Authorize callback function succeeds, the Exec callback function is called next.
The Exec function:

= gets the values of the CGI environment variables
= determines the PL/SQL procedure to run
= determines the parameters for the procedure

= builds PL/SQL scripts that bind the variables, and executes the scripts, which
execute the procedure and write the output to the client through the WRB

The Shutdown callback function is called automatically by the WRB. The Shutdown
function closes all open connections.

Using the PL/SQL Cartridge 1-15 Using Oracle Web Application Server™ Cartridges

Supported Data Types

Because HTTP supports character streams only, the PL/SQL Cartridge supports the
following subset of PL/SQL data types.

= NUMBER

= VARCHAR2

= TABLE OF NUMBER

= TABLE OF VARCHAR2

Records are not supported.

Overloading

PL/SQL supports overloading, where multiple subprograms (procedures or
functions) have the same name, but differ in the number, the order, or the data type
family of the parameters. When you call an overloaded subprogram, the PL/SQL
compiler determines which subprogram to call based on the data types passed.
PL/SQL allows you to overload local or packaged subprograms; standalone
subprograms cannot be overloaded. See the Oracle7 documentation for more
information on PL/SQL overloading.

In addition to PL/SQL’s restrictions on overloading, the PL/SQL Cartridge places one
more restriction: you must give the parameters different names for overloaded
subprograms that have the same number of parameters. The reason for this is that
HTML data is not associated with data types, and this makes it impossible for the
cartridge to know which version of the subprogram to call. For example, PL/SQL
allows you to define the following two procedures, but you will get an error when you
try to use them with the PL/SQL Cartridge because the parameter names are the same:

-- legal PL/SQL, but not for the PL/SQL Cartridge
CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (val IN VARCHAR?2);
PROCEDURE my_proc (val IN NUMBER);
END my_pkg;

To avoid the error, name the parameters differently. For example:

-- legal PL/SQL and also works for the PL/SQL Cartridge
CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (valvc2 IN VARCHAR2);
PROCEDURE my_proc (valnum IN NUMBER);
END my_pkg;

To invoke the first version of the procedure, the URL looks something like:
http://www.acme.com/pub_agent/plsgl/my_pkg.my_proc?valvc2=input
To invoke the second version of the procedure, the URL looks something like:

http://www.acme.com/pub_agent/plsql/my_pkg.my_proc?valnum=34

Using the PL/SQL Cartridge 1-16 Using Oracle Web Application Server™ Cartridges

Variables with Multiple Values

A browser can return, to the server, variables that contain multiple values. For
example, an HTML form that uses the SELECTelement allows users to select one or
more values from a given set. You can also have different form elements with the same
value for the NAMEattribute, in which case the values for these elements will be
returned on the same variable name.

The PL/SQL Cartridge handles multi-value variables by storing the values in a
PL/SQL table. This enables you to be flexible about how many values the user can
pick, and it makes it easy for you to process the user’s selections as a unit. Each value
is stored in a row in the PL/SQL table, starting at index 1. The first value (in the order
that it appears in the query string) of a variable that has multiple values is placed at
index 1, the second value of the same variable is placed at index 2, and so on. If the
order of the values in the PL/SQL table is significant in your procedure, you need to
determine the order in which the variables appear in the query string.

If you do not have variables with multiple values, you do not have to worry about the
order in which the variables appear, because their values are passed to the procedure’s
parameters by name, not by position.

The PL/SQL tables used as parameters in the PL/SQL Cartridge environment must
have a base type of VARCHARZ2. Oracle7 can convert VARCHAR2 to other data types
such as NUMBER, DATE, or LONG. The maximum length of a VARCHAR?2 variable
is 32K.

If you cannot guarantee that at least one value will be submitted for the PL/SQL table
(for example, the user can select zero options), use a hidden form element to provide
the first value. Not providing a value for the PL/SQL table produces an error, and you
cannot provide a default value for a PL/SQL table.

The following example passes a multi-valued parameter into a PL/SQL table. The
form contains a SELECT element and a set of checkbox elements. Note the two hidden
elements: one is used for the SELECT element, and the other for the checkboxes. This
is the HTML that creates the form:

<html>

<head>

<title>Multivalue Example</title>
</head>

<body>
<h1>Multivalue Example</h1>

<p>This form shows how variables with multiple values are
handled by the PL/SQL Cartridge. The form has one SELECT
element and a set of checkbox elements.

<form method="PUT" action="/owa_default_service/owa/dept_machine”>

<input type=hidden name="departments” value="no_value">
<input type=hidden name="machines” value="no_value">

<p>Select the departments in which you want to search:

Using the PL/SQL Cartridge 1-17 Using Oracle Web Application Server™ Cartridges

<p>
<select name="departments” multiple>
<option>Benefits
<option>Marketing
<option>Finance
<option>Sales
<option>Engineering
<option>QA
<option>Customer Support
</select>

<p>Select the machine type:

<input type=checkbox name="machines” value="PC">PC

<input type=checkbox name="machines” value="Mac”>Mac

<input type=checkbox name="machines” value="Sun">Sun

<input type=checkbox name="machines” value="Other">Other

<p><input type=submit value="Search">
</body>
</html>

Figure 1-4 shows the form as it appears in a browser:

Figure 1-4: Form passing in multiple values

sewa]

When the user clicks Search, the dept_machine procedure runs on the database
server. The procedure simply returns an HTML page that lists the user’s selections.
Note that the loop counter starts at index 2 because the hidden element values are in

Using the PL/SQL Cartridge 1-18 Using Oracle Web Application Server™ Cartridges

index 1 in the PL/SQL tables. When the procedure prints out the number of rows in
the PL/SQL tables, it subtracts one to avoid counting the hidden row.

create or replace procedure dept_machine (
departments IN owa_util.ident_arr,
machines IN owa_util.ident_arr)

IS
counter INTEGER;
ct INTEGER;
BEGIN

htp.htmlopen;

htp.headopen;

htp.title(‘Dept and Machines Results’);
htp.headclose;

htp.bodyopen;
htp.header(1, ‘Dept and Machines Results’);

ct := departments.COUNT - 1;

htp.print(‘The “departments” PL/SQL table has * || ct || *
rows.’);

htp.print("You selected:’);

htp.ulistOpen;

FOR counter IN 2 .. departments.COUNT LOOP

htp.listitem(departments(counter));
END LOOP;
htp.ulistClose;

ct := machines.COUNT - 1;

htp.print(‘The “machines” PL/SQL table has ‘|| ct || ‘ rows.");

htp.print("You selected:’);

htp.ulistOpen;

FOR counter IN 2 .. machines.COUNT LOOP
htp.listitem(machines(counter));

END LOOP;

htp.ulistClose;

htp.paragraph;

htp.bodyclose;
htp.htmiclose;
END;
/
show errors

Using the PL/SQL Cartridge 1-19 Using Oracle Web Application Server™ Cartridges

For example, if the user selected “Benefits” and “Customer Support” from the SELECT
element, and “PC”, “Mac”, and “Sun” from the checkbox, the procedure returns an
HTML page that looks like the following:

Figure 1-5: Generated page from the multivalue example

Dept and Machines Results
The "departments” PLASGL table has 2 rows. You selected:

® Benefits
& Cnstomer Support

The "machines" PLAAGL table has 3 rows. You selected:
e FC

& Ldac
& 3un

NLS Extensions

The NLS extensions are part of the DAD configuration, and they provide a flexible
infrastructure to request and retrieve values to and from Oracle7 databases in different
languages/formats. Even when the database server is configured with other NLS
settings, all the conversions are handled implicitly by the database server and the
PL/SQL Cartridge.

For example, if you have a database that is configured with US$ for NLS Currency and
you want to present the values in Japanese Yen to the user, all you need to do is to set
NLS Currency to Japanese Yen. When the data is retrieved from the database, it will be
presented as Japanese Yen.

The PL/SQL Cartridge in Web Application Server version 3.0 supports all the NLS
extensions supported by the Oracle7 database server. Versions of PL/SQL Cartridge
prior to Web Application Server 3.0 supported only the NLS_ LANGUAGE parameter.
This parameter is used by the PL/SQL Cartridge to derive the NLS_LANGUAGE,
NLS_TERRITORY, and NLS_CHARSET parameters.

Web Application Server version 3.0 supports these NLS extensions:

= NLS_DATE_FORMAT specifies the format to print dates in the client browser.

= NLS_DATE_LANGUAGE specifies the language to print day and month names
in the client browser.

= NLS_SORT specifies the type of sort to use when sorting within the database.

< NLS_NUMERIC_CHARACTERS specifies the decimal character and the
grouping separator character.

= NLS_CURRENCY specifies the local currency system to print monetary values
in the client browser.

= NLS_ISO_CURRENCY specifies the ISO currency symbol.

= NLS_CALENDAR specifies the calendar system to print dates in the client
browser.

Using the PL/SQL Cartridge 1-20 Using Oracle Web Application Server™ Cartridges

The new NLS extension parameters are optional. If you do not provide values for these
parameters, the default values are derived from the NLS_LANG parameter. For
example, if the value of NLS_LANG is AMERICAN_AMERICA.US7ASCII:

e the values for NLS_ DATE_LANGUAGE and NLS_SORT are derived from the
language part of NLS_LANG, and

< the values for NLS_CURRENCY, NLS_DATE_FORMAT,
NLS_ISO_CURRENCY, and NLS NUMERIC_CHARACTERS are derived from
the territory part of NLS_LANG

See the Oracle7 documentation for details and valid values for these parameters.

PL/SQL Cartridge and Applets

When you reference an applet using the APPLET tag in an HTML file, the server looks
for the applet class file in the directory containing the HTML file. If the applet class file
is in another directory, you use the CODEBASE attribute of the APPLET tag to specify
that directory.

When you generate an HTML page from the PL/SQL Cartridge and the page
references an applet, you must specify the CODEBASE attribute because the cartridge
does not have a concept of a current directory and does not know where to look for the
applet class file.

The following example uses htp.appletopen to generate an APPLET tag. It uses the
cattributes parameter to specify the CODEBASE value.

htp.appletopen(‘myapplet.class’, 100, 200, ‘CODEBASE="/applets™)
generates
<APPLET CODE="myapplet.class” height=100 width=200 CODEBASE="/applets">

/applets is a virtual path that contains the myapplet.class file.

Transactions

Note:

The Transaction Service is available only in the Advanced version of the Web
Application Server. It is not available in the Standard version.

In versions of the Web Application Server prior to 3.0, a procedure or set of procedures
executed through a URL request committed all the changes/transactions done within
that sequence of PL/SQL code. This may not be preferred for certain situations. For
example, in electronic commerce applications, you want users to be able to add or
remove items in their shopping basket without doing a commit every time the users
make a change or invoke a new request. The preferred behavior is to show an updated
view of the table with the new uncommitted row values, and allow the user to commit
or abort the transaction.

Web Application Server 3.0 lets you do that: the PL/SQL Cartridge in this version
supports the WRB Transaction Service, which allows you to perform transactions that
span several HTTP requests. The Transaction Service is based on the XA open model

Using the PL/SQL Cartridge 1-21 Using Oracle Web Application Server™ Cartridges

How Does It Work?

Note:

transactions defined by the X/Open Company; the PL/SQL Cartridge acts as a
transactional model client and the database is used as the resource manager.

Using the Transaction Service, you associate URLs with the operations on transactions
(begin, commit, and rollback). When a user invokes one of these URLSs, the
corresponding transaction operation is performed by the Transaction Service.

These URLs invoke stored procedures that display appropriate pages to the user. For
example, the begin transaction URL could display to the user a list of items to add to
his or her shopping cart, the commit transaction URL could display to the user a list of
purchased items, and the rollback transaction URL could display to the user a page
that asks if he wants to drop the existing shopping cart and start another one.

Between the begin and the commit or rollback URL, the user would invoke other URLs
that call procedures to perform some action on the database. These procedures might
or might not be within the transaction boundary. If the URL is within the transaction
boundary, the actions performed by that procedure would be committed or rolled back
when the transaction ends. If the URL is not within the transaction boundary, it is not
affected by the transaction, and the Web Application Server treats it as a regular
request (changes made by that URL are committed upon completion).

A transaction boundary is usually a package, in which case all URLs that invoke
procedures in the package are considered to be part of the transaction.

The sequence of URLSs that are invoked would look like the following:

-- begin a transaction
http://host:port/agent_name/plsql/test.txn_begin

-- the first operation in the transaction
http://host:port/agent_name/plsgl/test.txn_updatel

-- the second operation in the transaction
http://host:port/agent_name/plsqgl/test.txn_update2

-- some more operations

-- commit the transaction
http://host:port/agent_name/plsql/test.txn_commit

In the example above, test.begin, test.updatel, test.update2, and test.commit are
procedures in the test package in the database. The test package marks the transaction
boundary. You can give your procedures any name you like; the names used here are
used only for clarification.

In the procedures associated with transactions, including the ones within the
transaction boundary, you must not call the PL/SQL statements that commit or roll
back transactions. If you do, you cannot use the Transaction Service model.

If an error occurs before the commit or rollback transaction, you need to roll back the
transaction by calling the URL associated with the rollback transaction. Here is an
outline of the test.updatel procedure:

procedure test.updatel (...)

Using the PL/SQL Cartridge 1-22 Using Oracle Web Application Server™ Cartridges

begin
-- update some tables here

exception
when appropriate_exception then
owa_util.redirect_url("/agent_name/plsql/test.rollback");
end;

The owa_util.redirect_url procedure generates a Location line in the HTTP header.
You cannot call the rollback transaction procedure directly from within other
procedures.

Configuring the PL/SQL Agent to Use Transaction Service

Specifying the Transaction Service is done at the PL/SQL Agent level. You can have
some PL/SQL Agents that use the service, and others that do not.

To use the Transaction Service, you configure a PL/SQL Agent with the following
parameters:

Parameter

Description Example

Transaction Name

The name for this transaction. txn_demo

Begin Transaction URI

The URI that starts a transaction. | /owa_dba/plsgl/txn_demo.begin_url

Commit Transaction URI The URI that commits a /owa_dba/plsql/txn_demo.commit_url

transaction.

Rollback Transaction URI The URI that rolls back a /owa_dba/plsql/txn_demo.rollback_url

transaction.

Transaction Timeout

The number of seconds after 600 (the default value)
which the transaction times out.

Transactional Boundaries | A list of URIs that belong to the /owa_dba/plsql/txn_demo.*

transaction.

Note:

In the example values, the name of the PL/SQL Agent is “owa_dba”.

A PL/SQL Agent switches between regular database connection and the Transaction
Service context connection, depending on the URIs. When the URIs fall within the
transaction boundary, the PL/SQL Agent uses the Transaction Service context
connection to connect to the database.

For transaction service to work for the PL/SQL Cartridge, you need to enable the
TRANSACTION service for the cartridge. You can do this from any of these forms in
the Web Application Server Manager:

= From the New Cartridge Configuration form or the Update Cartridge
Configuration form, select “TRANSACTIONS” from the Services list.

= From the Web Request Broker Administration form, go to the “Applications and
Services” section, and enter “TRANSACTIONS” for the cartridges for which you
need the Transaction service.

Using the PL/SQL Cartridge 1-23 Using Oracle Web Application Server™ Cartridges

Example

You could design an electronic commerce application that allows users to add items to
their shopping carts, and the new values are not committed until the user clicks a
Commit button. The example uses the values from the table above.

A transaction begins when the user invokes the URL:

http://host:port/owa_dba/plsql/txn_demo.begin_url

The txn_demo.begin_url procedure could generate an HTML page that displays to the
user a list of items to add to his or her shopping cart. When the user adds an item to
the shopping cart, the page would invoke a procedure that is within the transaction
boundary so that the addition is considered part of the transaction but is not
committed (for example, txn_demo.add_item); the procedure that is invoked could
just add a new row to a table in the database and generate a page that displays the
contents of the user’s shopping cart. The page would contain buttons that allow the
user to commit or roll back the transaction. The commit button would invoke the
txn_demo.commit_url procedure, which could display to the user what he bought,
and the rollback button would invoke the txn_demo.rollback_url procedure, which
could ask the user if he wants to start another shopping cart.

Sessions/Cookies

Sessions are used by the Web Request Broker to maintain persistent states within
cartridges through multiple accesses over a period of time. Since the PL/SQL
Cartridge is unique in connecting to the database and all the states are maintained
within the database, the concept of sessions does not apply to the PL/SQL Cartridge.
Instead, cookies can be used to maintain persistent state variables from the client
browser. For information about cookies, see:

= http://home.netscape.com/newsref/std/cookie_spec.html

= http://www.virtual.net/Projects/Cookies/

The owa_cookie package contains subprograms and data types that you can use to set
and get cookie values:

= owa_cookie.cookie data type contains cookie name-value pairs.
= owa_cookie.get function gets the value of the specified cookie.
= owa_cookie.get_all procedure gets all cookie name-value pairs.
= owa_cookie.remove procedure removes the specified cookie.

= owa_cookie.send procedure generates a “Set-Cookie” line in the HTTP header.

Customized Extensions to HTP and HTF Packages

The htp and htf packages allow you to use customized extensions. Therefore, as the
HTML standard changes, you can add new functionality similar to the hypertext
procedure and function packages to reflect those changes.

Using the PL/SQL Cartridge 1-24 Using Oracle Web Application Server™ Cartridges

Here is an example of customized packages using non-standard <BLINK> and
imaginary <SHOUT>tags:

create package nsf as
function blink(cbuf in varchar2) return varchar2;
function shout(cbuf in varchar2) return varchar2;
end;

create package body nsf as

function blink(cbuf in varchar2) return varchar2 is
begin return ('<BLINK>' || cbuf || '</BLINK>");

end;

function shout(cbuf in varchar2) return varchar2 is
begin return (<SHOUT>’ || cbuf || '</SHOUT>");

end;

end;

create package nsp as
procedure blink(cbufin varchar2);
procedure shout(cbufin varchar2);
end;

create package body nsp as
procedure blink(cbufin varchar2) is
begin htp.print(nsf.blink(cbuf)); end;
procedure shout(cbufin varchar2) is
begin htp.print(nsf.shout(cbuf)); end;
end;

Now you can begin to use these procedures and functions in your own procedure.

create procedure nonstandard as
begin
nsp.blink('Gee this hurts my eyes!’);
htp.printCAnd | might ’ || nsf.shout('get mad?!));
end;

String Matching and Manipulation

The owa_pattern package contains procedures and functions that you can use to
perform string matching and string manipulation with regular expression
functionality. The package provides the following subprograms:

= Theowa_pattern.match function determines whether a regular expression exists
in a string. It returns TRUE or FALSE.

= The owa_pattern.amatch function is a more sophisticated variation of the
owa_pattern.match function. It lets you specify where in the string the match has
to occur. This function returns the end of the location in the string where the
regular expression was found. If the regular expression is not found, it returns 0.

< The owa_pattern.change function and procedure lets you replace the portion of
the string that matched the regular expression with a new string. If you call it as
a function, it returns the number of times the regular expression was found and
replaced.

Using the PL/SQL Cartridge 1-25 Using Oracle Web Application Server™ Cartridges

These subprograms are overloaded, that is, there are several versions of each,
distinguished by the parameters they take. Specifically, there are six versions of
match , and four each of match and change .

The subprograms use the following parameters:

= line - is the string to be examined for a match. Despite the name, it can be more
than one line of text. Its data type is either a VARCHAR2 or a
owa_text.multi_line.

You can create a multi_line data type from a string using the
owa_text.stream2multi procedure. If a multi_line is used, the rlist parameter
specifies a list of chunks where matches were found.

If the line is a string and not a multi_line, you can add an optional output
parameter called backrefs. This parameter is a row_list that holds each string in
the target that was matched by a sequence of tokens in the regular expression.

= pat-isthe pattern that the subprograms attempt to locate in line. The pattern can
contain regular expressions. See “Regular Expressions” for more information.
Note in the owa_pattern.change function and procedure, this parameter is called
from_str.

= flags - specifies if the search is case-sensitive or if substitutions are to be done
globally.

owa_pattern.match Function

Here is an example of the owa_pattern.match function:

boolean foundMatch;
foundMatch := owa_pattern.match('"KAZOQ’, 'zoo.*, 'i");

This is how the function works: KAZOO is the target where it is searching for the
regular expression “z00.* . The dot indicates any character other than newline, and
the asterisk matches 0 or more of the preceding characters. In this case, it matches any
character other than the newline.

Therefore, this regular expression specifies that a matching target consists of “z00”,
followed by any set of characters neither ending in nor including a newline (which
does not match the period). The “i " is a flag indicating that case is to be ignored in the
search.

In this case, the function returns TRUE, which indicates that a match had been found.

owa_pattern.change Function or Procedure

owa_pattern.change can be a procedure or a function, depending on how it is invoked.
As a function, it returns the number of changes made. If the flag ‘g’ is not used, this
number can be only 0 or 1. The “g” flag specifies that all matches are to be replaced by
the replacement string. Otherwise, only the first match is replaced.

The replacement string can use the ampersand (&) to indicate that the portion of the
target that matched the regular expression is to be included in the expression that
replaces it. For example:

owa_pattern.change(’Cats in pajamas’, 'C.+in’, '& red’)

Using the PL/SQL Cartridge 1-26 Using Oracle Web Application Server™ Cartridges

Regular Expressions

The regular expression matches the substring ‘Cats in’. It then replaces this string with
“& red”. & indicates “Cats in”, because that is what matched the regular expression.
Thus, this procedure replaces the string ‘Cats in pajamas’ with 'Cats in red’. If you
called this as a function instead of a procedure, it would return 1, indicating that a
single substitution had been made.

A regular expression is a string containing the characters you want to match
interspersed with various wildcard tokens and quantifiers. The wildcard tokens match
something other than themselves, and the quantifiers modify the meaning of tokens or
literals by specifying such things as how often each is to be applied.

Regular expressions for the subprograms in this package can be either a VARCHAR?2
or a owa_pattern.pattern data type. You can create a owa_pattern.pattern data type
from a string using the owa_pattern.getpat procedure.

The following wildcard tokens are supported:

Token Description

A Matches newline or the beginning of the target

$ Matches newline or the end of the target

\n Matches newline
Matches any character except newline

\t Matches tab

\d Matches digits [0-9]

\D Matches non-digits [not 0-9]

\w Matches word characters (0-9, a-z, A-Z, or)

\W Matches non-word characters (not 0-9, a-z, A-Z, or)

\s Matches whitespace characters (blank, tab, or newline).

\S Matches non-whitespace characters (not blank, tab, or newline)

\b Matches “word” boundaries (between \w and \W)

\X<HEX> Matches the value in the current character set of the two hexadecimal
digits

\<OCT> Matches the value in the current character set of the two or three octal
digits

\ Followed by any character not covered by another case matches that
character

Using the PL/SQL Cartridge 1-27 Using Oracle Web Application Server™ Cartridges

Token

Description

Applies only to CHANGE. This causes the string that matched the
regular expression to be included in the string that replaces it. This
differs from the other tokens in that it specifies how a target is
changed rather than how it is matched. This is explained further
under CHANGE.

Quantifiers

Any of the above tokens except & can have their meaning extended by any of the
following quantifiers. You can also apply these quantifiers to literals.

Quantifier

Description

?

0 or 1 occurrence(s)

*

0 or more occurrences

+

1 or more occurrence(s)

{n}

Exactly n occurrences

(n.}

At least n occurrences

{n,m}

At least n, but not more than m, occurrences

Flags

In addition to targets and regular expressions, the OWA_PATTERN functions and
procedures can use flags to affect how they are interpreted.

Flag

Description

This indicates a case-insensitive search.

g

This applies only to CHANGE. It indicates a global
replace. That is, all portions of the target that match the
regular expression are replaced.

ICX

If you are running Oracle7 database server version 7.3.3 or later, you can perform ICX

(intercartridge exchange) from the PL/SQL Cartridge. ICX enables cartridges to

communicate with each other by making HTTP requests. The responses from the ICX

calls can be received back by the PL/SQL Cartridge for further processing.

Consult the Oracle7 documentation for details on the ICX calls. For the 7.3.3 release,
the information can be found in the “readme” file.

Using the PL/SQL Cartridge

1-28 Using Oracle Web Application Server™ Cartridges

Error-Reporting Levels

In Web Application Server version 3.0, the PL/SQL Cartridge supports three levels of
error-reporting. These levels control what the user sees when an error occurs. In earlier
versions, the PL/SQL Cartridge displayed a static file in case of errors, and it was not
possible to identify the error from the browser.

Now, two more levels of error-reporting are supported. The error levels are configured
as part of the PL/SQL Agent. Errors are reported only during the Exec callback

function.

Error level

Description

0

Displays a static file in the client browser when an error occurs.
Use this level if you do not want the users to see any information
about the error.

You can specify the file to return to the client. Otherwise, the
default file is SORAWEB_HOME/admdoc/error.html (UNIX) or
%ORACLE_HOME%\admdoc\error.html (NT).

Displays the date and time of the error, and also the URL that
caused the error. Use this level if you want to provide only
minimal information for the user to pass it on to Web site
managers or application developers. The site manager or
developer can use this information to help diagnose the error in
the log file.

If this error level is specified, the error page (if specified) is
ignored.

Example:

Error occurred while accessing “/owa_dba/owa/myproc” at Mon Jan 6
16:33:32 1997.

Displays detailed information such as date and time of the error,
the URL, the agent name, the procedure that was called, the
parameter names and values, the web server error code, and the
database error with a call stack. This error level is typically used
only while developing or debugging an application.

Example:

Error occurred at Mon Jan 6 16:33:32 1997

OWS-05101: Agent: execution failed due to Oracle error 6564
ORA-06564: object show_stats does not exist

ORA-06512: at “SYS.DBMS_DESCRIBE”, line 55
ORA-06512: at line 1

OWA SERVICE: OWA DEFAULT_SERVICE
PROCEDURE: show_stats

Table 1-2: Error levels in the PL/SQL Cartridge

Authentication and Security

The Web Application Server provides different levels of authentication mechanisms,
which are documented in Security. In addition to these mechanisms, the PL/SQL
Cartridge provides two levels of authentication mechanisms that are different from the

Using the PL/SQL Cartridge

1-29 Using Oracle Web Application Server™ Cartridges

ones provided by the Web Application Server. The Web Application Server protects
the documents, virtual paths, and contents generated from the WRB, while the
PL/SQL Cartridge protects the users logging into the database or the PL/SQL web
application itself.

Note: Eventhough PL/SQL procedures are case-insensitive, the WRB protection mechanism
is case-sensitive. To protect all packages and procedures you need to protect the virtual
path for the PL/SQL Cartridge, for example: Zowa_dba/plsgl. Notice that this does
not specify a particular package or procedure. To specify a single procedure or
package, you must use custom authentication, which is described in the section
“Custom Authentication” in “Using Web Application Server Cartridges”.

For more information, read the security white paper on Oracle’s web site. This paper
describes how to develop secure PL/SQL web applications.

Dynamic Username/Password Authentication

In this scheme, access is controlled by the database itself; this scheme is suitable for
applications that do not want to control the access on their own.

In Web Application Server versions prior to 3.0, the PL/SQL Cartridge stored the
username/password information used to login to the databases in a configuration file.
This file is read during the cartridge’s initialization phase, and the cartridge uses this
information to log into the database. This mechanism did not provide any additional
level of security other than those from the web server itself.

In Web Application Server version 3.0, the PL/SQL Cartridge does not require
developers to store the username/password information in the configuration file. The
username and password parameters under the Database Access Descriptor (DAD)
section are optional; by leaving these parameters empty, the developer enables users
to log into different schemas (database accounts) using the same PL/SQL Agent/DAD
combination. Users will be prompted with a dialog box in the client browser to provide
username and password information. This prompting happens during the
authorization callback, and the user-supplied information will be used to log into the
database schema that belongs to the given username/password.

This enables developers to develop applications that access data from different
schemas; the schemas correspond to the given username/password.

This scheme alleviates the problem of creating multiple PL/SQL Agent/DAD
combinations (DCDs in version 2.0) for multiple users. Note that the PL/SQL
application and the Toolkit packages need to be loaded into all the schemas for this
method to work. However, the availability and exposure of data from one schema into
other is cumbersome and can be insecure.

This is suitable for applications where multiple users with their own database accounts
interact through the web applications. For example, for an intranet HR application
serving 100 employees within that company, version 2.0 required 100 DCDs to be
created with 100 different usernames and passwords, whereas in version 3.0 you just
need to create one PL/SQL Agent/DAD combination with no username and
password.

Using the PL/SQL Cartridge 1-30 Using Oracle Web Application Server™ Cartridges

Custom Authentication

Custom authentication is suitable for applications that want to control the access
within the application itself or for applications that do not have a separate schema for
every user who uses the application. For example, if you have a purchasing application
accessed by many third-party vendors, you do not need to create a schema for every
vendor. All you need to do is to write the application and load it into one schema
where all the application users will be logging in. The application authenticates the
users in its own level and not within the database level.

Custom authentication needs a static username/password to be stored in the
configuration file, and cannot be combined with the dynamic username/password
authentication. Custom authentication does not require the application and the Toolkit
packages to be loaded in multiple schemas. The PL/SQL Cartridge uses the
username/password provided in the DAD to log into the database. Once the login is
done, authentication control is passed to the application, and application-level
PL/SQL hooks (callback functions) are called. The implementations for these callback
functions are left to the application developers. The return value of the callback
function determines if the authentication succeeded or failed: if the function returns
TRUE, authentication succeeded. If it returns FALSE, authentication failed and the
code in the application is not executed. If you specify custom authentication and the
callback function does not exist, you will get an error in the wrb.log file.

To enable custom authentication, you have to edit the following line in the privinit.sql
file:

owa_sec.set_authorization(OWA_SEC.NO_CHECK)

Change the default parameter value of OWA_SEC.NO_CHEQKset a different level of
authentication. The following table describes the other valid values:

Value for parameter Access control scope Callback function
OWA_SEC.NO_CHECK n/a n/a
OWA_SEC.GLOBAL All packages owa_init.authorize
OWA_SEC.PER_PACKAGE Specified package packageName.authorize
OWA_SEC.PER_PACKAGE Anonymous authorize

procedures

= OWA_SEC.GLOBAL

If you set the parameter to OWA_SEC.GLOBALlthe owa_init.authorize function
will be called whenever the PL/SQL Cartridge is invoked. For example, the
following authorize function verifies that the user logged in as “guest” and
specified “welcome” as the password and that the first and second numbers of
the IP address of the client are 144 and 25.

create or replace package body owa_init is
-- Global authorize callback function
-- It is used when the authorization scheme is set to
-- OWA _SEC.GLOBAL
function authorize return boolean is

Using the PL/SQL Cartridge 1-31 Using Oracle Web Application Server™ Cartridges

ip_address owa_util.ip_address;
begin
-- prompt the user for login and password
owa_sec.set_protection_realm(‘vendors’);
ip_address := owa_sec.get_client_ip;
if ((owa_sec.get_user_id = ‘guest’) and
(owa_sec.get_password = ‘welcome’) and
(ip_address(1) = 144) and (ip_address(2) = 25))
then
return TRUE;
else
return FALSE;
end if;
end;

begin -- OWA_INIT package initialization
owa_sec.set_authorization(OWA_SEC.GLOBAL);
end,

= OWA_SEC.PER_PACKAGE

If you set the parameter to OWA_SEC.PER_PACKAGAd the request specifies a
procedure within a package, the authorize function in the package is invoked. If
the procedure is not within a package, the anonymous authorize function is
called.

For example, if the user invokes a procedure called foo.print_page, the
foo.authorize function is called to authenticate the user.

create or replace package foo is
procedure print_page;
function authorize return boolean;
end;

create or replace package body foo is
procedure print_page is
begin
htp.print("Hello World’);
end;

function authorize return boolean is
begin
owa_sec.set_protection_realm(‘Enter Password for
foo’);
if ((owa_sec.get_user_id = ‘guest’) and
(owa_sec.get_password = ‘welcome’) then
return TRUE;
else
return FALSE;
end if;
end; -- authorize function
end; -- package body foo

create or replace package body owa_init is

Using the PL/SQL Cartridge 1-32 Using Oracle Web Application Server™ Cartridges

-- The authorize function in the owa_init package will not be
-- invoked if the authorization level is set at
-- OWA_SEC.PER_PACKAGE.
begin -- OWA_INIT package initialization
owa_sec.set_authorization(OWA_SEC.PER_PACKAGE);
end;

Performance

This section covers performance issues involved in configuring and running the
PL/SQL Cartridge. Before addressing the performance issues, you should read “Life
Cycle of the PL/SQL Cartridge” to be familiar with cartridge invocation and execution.

The [Apps] section of the WRB configuration file contains parameters that specify the
minimum and maximum number of cartridges that can exist through the life of the
system. These Min and Max parameters optimize the performance of the cartridge
depending up on the incoming requests. Factors such as the number of requests,
frequency of requests, and number of concurrent requests dictate the settings for the
Min and Max parameters. The Min value specifies the number of cartridges that are
spawned when the WRB starts up.

For example, if a system serves 10,000 requests per day with 50 concurrent requests
and at a frequency of one request per minute, then setting Min to 50 and Max to 200
will optimize the performance of the system. The Min parameter should be set to a
number slightly greater than or equal to the number of concurrent requests, and the
Max value can be derived from the frequency and number of concurrent requests. Note
that arbitrarily setting these numbers can lead to higher resource utilization and thus
reduce the performance of the system.

When the cartridge starts up, it loads all the agent configurations associated with that
cartridge and maintains physical database connections to every unique database
server. This process takes some time and consumes the machine’s resources (memory).

For example, if you have 200 agents associated with 100 unique database servers and
if it takes 1 second to connect to each database server, then the cartridge initialization
will take 100 seconds with resources to maintain 100 database connections. This can
degenerate the system when it scales.

To avoid this, you can partition the agents to map to different PL/SQL Cartridges. The
Web Application Server version 3.0 allows you to name the cartridges with user-
defined names. This gives you flexibility to associate a subset of agents with every
cartridge. In the previous example, you could partition 100 agents associated with 50
unique database servers to be invoked through cartridge named PLSQL1 and the other
100 agents through cartridge name PLSQL2. This cuts down the initialization time into
half.

The disadvantage of this method is that applications developed for cartridge PLSQL1
cannot be invoked through cartridge PLSQL? if the agent names/virtual paths are
hard coded within applications (as part of URL links and anchors). This can be avoided
by using the CGI environment variable “SCRIPT_NAME” instead of hard coding the
agent names/virtual paths.

Using the PL/SQL Cartridge 1-33 Using Oracle Web Application Server™ Cartridges

Troubleshooting

= Problems with Invoking Your PL/SQL Application

= Looking at Error Messages Generated by the Database

= Unhandled Exceptions

= Looking at the HTML Generated by Your PL/SQL Application

= Setting Tracing Levels

Problems with Invoking Your PL/SQL Application

If your PL/SQL application cannot be invoked:

= Makesure thatthe PL/SQL Cartridge is registered with the WRB, and the virtual
path for your application maps to the PL/SQL Cartridge.

= Make sure that the Web Listener and the WRB are functioning properly. For
example, check that you can invoke other PL/SQL applications and other
cartridges. You can try invoking the sample PL/SQL applications.

= Make sure that your PL/SQL subprogram that the URL references is a
procedure, not a function.

Looking at Error Messages Generated by the Database

You can look at the database error messages that are returned to the user by setting the
error-reporting level to the highest value, which is 2.

You set the error levels for each PL/SQL Agent using the Web Application Server
Manager. See “Error-Reporting Levels” for details on the different error levels.

If you have logging turned on for the PL/SQL Cartridge, database error messages are
logged to the WRB log file (wrb.log). To turn logging on for the cartridge, go to the
“Applications and Services” section of the WRB Administration form, and check that
the PL/SQL Cartridge has the Logger Service enabled. You should have a line that has
PLSQLin the App column, and LOGGERnN the Service Name column.

Unhandled Exceptions

If an error occurs in your PL/SQL application, an exception is thrown. If you do not
handle the exception, the error is logged in the log file with the Oracle error stack and
an error message is returned to the user. The error-reporting level controls what the
user sees. See “Error-Reporting Levels” for details on the different error levels.

Recall that when a procedure exits with an unhandled exception, PL/SQL does not
assign values to OUT parameters and does not roll back database work done by your
procedure.

You can avoid unhandled exceptions by coding an OTHERS handler at the top level of
your procedure.

Using the PL/SQL Cartridge 1-34 Using Oracle Web Application Server™ Cartridges

Looking at the HTML Generated by Your PL/SQL Application

The PL/SQL Web Toolkit provides the owa_util.showpage procedure, which you can
use in Oracle Server Manager to print out the output of your application. The following
example prints out the HTML generated by the current_users procedure (which was
shown in the Tutorial section).

% svrmgrl

Oracle Server Manager Release 2.3.2.0.0 - Production
Copyright (c) Oracle Corporation 1994, 1995. All rights reserved.
Oracle7 Server Release 7.3.2.1.0 - Production Release

With the distributed option

PL/SQL Release 2.3.2.0.0 - Production

SVRMGR>connect scott/tiger

Connected.
SVRMGR>set serveroutput on
Server Output ON

SVRMGR>execute current_users
Statement processed.
SVRMGR>execute owa_util.showpage
Statement processed.

<HTML>

<HEAD>

<TITLE>Current Users</TITLE>
</HEAD>

<BODY>

<H1>Current Users</H1>

<TABLE >

<TR>

<TH>USERNAME</TH>
<TH>USER_ID</TH>
<TH>CREATED</TH>

</TR>

<TR>

<TD ALIGN="LEFT">SYS</TD>

<TD ALIGN="LEFT">0</TD>

<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>

<TR>

<TD ALIGN="LEFT">SYSTEM</TD>
<TD ALIGN="LEFT">5</TD>

<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>

<TR>

<TD ALIGN="LEFT">WWW_USER</TD>
<TD ALIGN="LEFT">11</TD>

<TD ALIGN="LEFT">27-JAN-97</TD>
</TR>

<TR>

<TD ALIGN="LEFT">TRACESVR</TD>
<TD ALIGN="LEFT">8</TD>

<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>

<TR>

Using the PL/SQL Cartridge 1-35 Using Oracle Web Application Server™ Cartridges

<TD ALIGN="LEFT">SCOTT</TD>
<TD ALIGN="LEFT">9</TD>

<TD ALIGN="LEFT">21-JAN-97</TD>
</TR>

<TR>

<TD ALIGN="LEFT">WWW_DBA</TD>
<TD ALIGN="LEFT">10</TD>

<TD ALIGN="LEFT">27-JAN-97</TD>
</TR>

</TABLE>

</BODY>

</HTML>

Setting Tracing Levels

You can get detailed information about what the PL/SQL Cartridge is doing by
increasing the tracing level. You can do this from the Logger Configuration form. In
the form, go to the “System Messages Logging” section, and change the value in the
Severity Level field.

The tracing messages are printed only to the wrb.log file; they are not sent to the user.

The severity levels range from 0 to 15; low values indicate that only errors are logged,
while high values indicate that warnings and informative messages are also logged.
For example, if you set the severity level to 8, you can see when the cartridge has
performed the authentication and execution operations. The following table describes
the severity levels:

Meaning Severity Recommended usage
Fatal errors (for example, 0 0 indicates a core failure or a database error
Mmemory errors) occurred.
Soft errors (for example, non- 1 1 indicates that writing to file or resource failed.
fatal input/output errors)
2 (user-defined)
3 (user-defined)
Warnings (for example, 4 4 indicates a configuration error.
missing file or missing
configuration section) 5 (user-defined)
6 (user-defined)
Tracings (for example, request 7 7 indicates the process has entered the init,
has been executed) terminate, or reload stages.
8 8 indicates the process has entered the

authentication and execution stages.

9 (user-defined)

10 (user-defined)

Using the PL/SQL Cartridge 1-36 Using Oracle Web Application Server™ Cartridges

Meaning Severity Recommended usage

Debugging (for example, 11 11 is used for printing debugging variables.
variable logging)

12 (user-defined)

13 (user-defined)

14 (user-defined)

15 (user-defined)

Using the PL/SQL Cartridge 1-37 Using Oracle Web Application Server™ Cartridges

Using the PL/SQL Cartridge 1-38 Using Oracle Web Application Server™ Cartridges

cuarrer [

Using the Java Cartridge

The Java Cartridge provides a runtime environment where client browsers can send
requests to Java applications running on the server side.

Contents
= Overview
= Developing Web Applications in Java
= Tutorial
< Developer’s Guide
« Troubleshooting and Debugging
< Examples

= Reference

Overview

Architecture

An HTTP request routed to the Java Cartridge is processed by running a Java
application which returns the HTTP response. Java applications can take advantage
Java functionality, such as:

Object-oriented programming characteristics (inheritance, encapsulation and
polymorphism), which allow code to be written with modular design, and
encourage the reuse of code (such as with writing libraries)

Access to a database (such as with the PL/SQL cartridge)

Ability to perform other computing tasks such as programmatically inserting
data

A more general-purpose programming language (compared to PL/SQL)

Platform-independent applications because of the bytecode interpreter
approach

Easy to add custom classes and packages

Ability to incorporate legacy codes and libraries (in C) by the use of the native
method interface

When the Listener component of the Web Application Server receives requests for the
Java Cartridge from browsers, the Java Cartridge interprets information in the URL to
identify the Java application that should handle the request. The Java application then
programmatically responds to the client, performs interim tasks, accesses a database,
or performs other computing tasks. Ultimately, the Java application sends a response
back up through the Java Virtual Machine (JVM) and the Web Application Server to
the client.

Figure 2-1: Java Cartridge environment

HTTP |
Browser Web Java Java
(Client) ~&— Application Cartridge Application
Server (JVM)
(Listener)

Java Application vs. Applet

Using the Java Cartridge

Java programs fall into two categories: applications and applets.

A Java applet is downloaded from the net and runs in a Web browser. The
browser prevents the applet from causing system damage or security breaches.
For example, an applet is not allowed to read from the local file system. An
applet must be a subclass of the Applet class, which has many entry points such
asinit() ,start() ,stop() ,and destroy()

2-2 Using Oracle Web Application Server™ Cartridges

Java Cartridge

A Java application is typically loaded from the local file system. It is trusted and
is not subject to security restrictions. An application’s entry point is the main()
method.

The Java Cartridge supports only Java applications. It does not support Java applets.

The Java Cartridge has the following characteristics:

It uses Sun’s Java interpreter, with its class library. The interpreter is converted
into a Web Request Broker (WRB) cartridge.

It gives better performance (no start-up/shut-down per request as in CGl), load
balancing, and benefits provided by the WRB.

It must be invoked by the Web Application Server. It is not an executable and
cannot be executed separately from the command line.

It does not include any Java compiler, debugger, disassembler, or other tool that
is needed for Java application development. You need either the Java
Development Kit (JDK) from JavaSoft or other hardware vendor, or a Java
Integrated Development Environment, such as Microsoft Visual J++ or
Symantec Cafe.

It provides a Java Web Toolkit, which is a set of class libraries and tools for
dynamic HTML generation, database access, HTTP access, and WRB access.

Invocation of the Application

Using the Java Cartridge

The routing of the request from the Web Application Server to the Java Cartridge to the
Java application (and back) is determined by information contained in the URL.

Using the HTTP Get form for a URL, the Dispatcher and the Listener route the request
to the Java Cartridge as follows:

1.

The Web Application Server receives the request identified by a URL. For
example: http://mymachine.mydomain/java/HelloWorld.

The WRB of the Web Application Server dispatches the request. The WRB
examines the URL and determines which cartridge should handle the request. If
the URL is under one of the virtual paths that belong to the Java Cartridge, the
WRB dispatches the request to the Java Cartridge. For example: /java/
HelloWorld is under the virtual path /java, which maps to the Java Cartridge.

The virtual path settings of the Java Cartridge is in the WRB’s configuration,
under the AppDirs section.

The WRB finds a Java Cartridge, if available, or starts one if none is available.

The Java Cartridge receives the request, examines the URL, and finds the name
of the application (class) to invoke. The name of the class is the tail part of the
URL. For example, in /java/HelloWorld, HelloWorld is the name of the class.

The Java Cartridge loads the class. It invokes the class at its entry point, main() .

The Java Cartridge application generates a response, including both the HTTP
response header and response body, and returns it through a special output
stream (HtmlStream) using the print method. The Java Cartridge receives the
response and returns it to the WRB. The WRB forwards the response to the
browser that invoked this request.

2-3 Using Oracle Web Application Server™ Cartridges

Supported Versions of Java

The Java Cartridge is implemented using Java Virtual Machine version 1.0.2 from
JavaSoft. You should use JDK 1.0.2 or an IDE based on 1.0.2 for developing Java
applications for the Java Cartridge.

Development using other versions such as 1.1 should be possible if you limit your class
usage to those found in 1.0.2. However, this has not been tested and is not supported.

Developing Web Applications in Java

e Structure of a Java Web Application

= Designing a Java Web Application with Static HTML Files

< Building the Java Application

< Adding and Running the Application into the Web Application Server

Note: This section assumes that you understand the general request-response approach of a

Web application.

Structure of a Java Web Application

Using the Java Cartridge

When the Java Cartridge invokes a Java Web application, it looks for an entry point in
the application. Similar to the main function in a C program, the entry point of a Java
Application is the main method. This method must be public and static. It takes an
array of strings as the only parameter and does not have a return value. This entry
pointis consistent with that of Java applications invocable by the Java interpreter in the
JDK. As an example, a class invocable by the Java Cartridge should have a main
method similar to:

class HellowWorld {
/I The main method must be public and static
public static void main (String args[]) { ... }

}

You should store the source code for each class using the class name plus the “.java”
extension. For example, the HelloWorld example class should be stored in
HelloWorld.java.

When aJava application is invoked by a Web request, it can retrieve the request object
by invoking the getRequest method in the HTTPclass in the
oracle.owas.wrb.services.http package. With the request object, you can
access information in the HTTP request.

To generate a response back to the client, use the print method on an HtmIStream
object in the oracle.html package. An HtmIStream object can be obtained by
invoking theStream method in HtmIStream class.

For most Web requests, the response will be returned in HTML format. You may print
the HTML content directly to HtmIStream . Oracle’s Java Web Toolkit provides a
Dynamic HTML Generation package (in oracle.html package) which handles the

2-4 Using Oracle Web Application Server™ Cartridges

details of HTML generation. It also allows you to generate HTML pages in an object-
oriented approach.

For more information on handling Web requests and responses, see the “Developer’s
Guide”.

Designing a Java Web Application with Static HTML Files

There are two methods of designing a Java Web application:

= Your Java application may generate all the HTML content. You may store the
static portions of the HTML content in files.

< You may generate only those portions of the HTML content that are dynamic.
When serving a request, you can combine the static portions with the dynamic
ones which you generate.

The second approach has the following advantages:

= |t gives you better performance because you construct only the portions of your
HTML page that change in each request.

= By separating the static portions from the dynamic ones from your HTML pages,
you can change the HTML layout of your Web Application without touching
your Web application.

The Dynamic HTML Generation package enables you to generate HTML pages by
incorporating dynamic HTML content in static HTML pages. Using this feature, you
can create the basic skeleton of HTML pages in separate HTML files. A skeleton HTML
page contains placeholders that will be replaced with HTML that you dynamically
generate with your Web application.

More details of generating HTML with static HTML pages are discussed in the “Using
Dynamic Content” section.

Building the Java Application

The Java Cartridge only provides the Java runtime environment, specifically the Java
Interpreter and a set of class libraries. To develop a Java Web application, you also
need a Java compiler and a debugger. These tools are parts of many Java development
tools. They include:

< Java Development Kit (JDK) - The basic Java development tool provided by
JavaSoft. The JDK for Sun Solaris and Microsoft Windows 95/NT can be
downloaded from JavaSoft’s home-page http://www.javasoft.com . Other
hardware vendors also provide JDK for their platforms.

e Borland’s JBuilder
e Microsoft’s J++
= SunSoft’s Java Workshop

< Symantec’s Cafe

Because the Java Cartridge does not include a debugging environment to develop your
Java Web application, you should use your JDK or Java IDE to write and debug your
application in the same way you do for your other Java applications.

Using the Java Cartridge 2-5 Using Oracle Web Application Server™ Cartridges

When you debug your applications in these tools, some of the functionalities in the
Java Web Toolkit may be disabled because your Web application is not executed in the
WRB environment. In these situations, you may need to insert dummy code in your
application to substitute for Java Web Toolkit calls so that your application functions
as if itis running in the Java Cartridge.

Once your have completed the non-Java Web Toolkit portions of your application,
enter the Java Web Toolkit calls and compile the application. To compile the
application using the JDK or Java IDE with Java Web Toolkit, you need to include the
Toolkit’s library in your environment. Make sure that the following paths are included
in the CLASSPATH and LD_LIBRARY_PATH environment variables:

< The Toolkit class library SORAWEB_HOME/java/oracle.zip in the class path
CLASSPATH setting

= The supplementary native libraries SORAWEB_HOME/lib in the native library
path LD_LIBRARY_PATH setting

After compilation, your Java Application will be compiled into Java class files with a
.class extension.

Adding and Running the Application into the Web Application Server

Once your application is compiled, deploy it by copying your Java class file(s) to the
physical path of the virtual path under which you want to invoke your Java
application. The physical paths are added to the CLASSPATH automatically. For
example, to invoke your Java application under the virtual path /java, copy your
classes to SORAWEB_HOME/java (UNIX) or %ORAWEB_HOME%\java (NT),
which is the physical path of /java.

Make sure that your Web Request Broker and Web Listener have been started. Then,
invoke your application by entering the URL of your application in your Web browser.
For example: http://<host>.<domain>:<port>/java/<Java class>. The <Java class>
should contain the main entry method. You may use virtual paths other than /java

You should see the HTML results generated by your Java Web Application in your
browser.

Once aJava Web Application is invoked, the classes that implement the application are
cached by the Java Cartridge. This improves the performance of the application
because the Java Cartridge does not have to reload the classes in subsequent
invocations. If you modify your Java Application, you need to restart the Java
Cartridge to reload the classes. Reloading the Java Cartridge does not cause the
cartridge to reload the classes.

Tutorial

Using the Java Cartridge

The Web Application Server does not have built-in debugging facilities, other than
using print statements to generate messages on the screen or to a log file. For this
reason, Oracle recommends that you build and debug as much of your application
outside of the Web Application Server as possible using the JDK APIs, then finish the
application using the Java Cartridge APIs inside the Web Application Server. This
way, you can use the full debugging of the JDK environment for the standard API parts

2-6 Using Oracle Web Application Server™ Cartridges

of your program. Then move on to adding the Web Application Server portions when
all of this is working properly.

Creating your First Java Application

The following is a simple Java application that prints “Hello World” to the standard
output. Start by building the application outside of the Web Application Server
environment using standard JDK APIs.

Use the editor in the IDE that comes with your Java compiler to enter the Java program
shown below.

class HellowWorld {
public static void main (String args[]) {
System.out.printin("Hello World");
}
}

There are two points of interest:

e The program is enclosed by a class definition—HelloWorld.

< The body of the program is contained in a method called main() . Every Java
application requires a main() method which is the first method run when the
application executes.

Once you have finished entering the source code, save the file. Typically, Java
programs are saved using the name of the class they define with the .java extension.
For our example, save the file as HelloWorld.java.

Now compile the source file using the Java compiler.

=« InSun’sJDK, the Java compiler is called javac. To compile a Java program, make
sure the javac program is in your execution path and type:

javac HelloWorld.java

= InWindows, the Java compiler is part of the IDE. Select the Compile option from
the menus.

The program creates a Java bytecode file called HelloWorld.class in the same directory
as the source file. You can now run the bytecode file using the Java interpreter that
comes with your JDK.

= For Sun, the interpreter is java. Make sure that java is in your path and enter:
java Helloworld

= For Windows, select appropriate Run command from the IDE menu.

The string “Hello World” prints to your screen.

Using the Java Cartridge 2-7 Using Oracle Web Application Server™ Cartridges

Creating an Oracle Java Application

To make this example runnable by the Java Cartridge, add the following functionality
to the basic HelloWorld program to produce an HTML page whose title and content
are both “Hello World”:

import oracle.html.*;
class HellowWorld {
public static void main (String args[]) {

}
}

Il Create an HtmlHead Object titled "Hello World"
HtmIHead hd = new HtmIHead("Hello World");

/I Create an HtmIBody Object

HtmIBody bd = new HtmIBody();

/ICreate an HtmlPage Object

HtmlPage hp = new HtmIPage(hd, bd);

/I Add a simple string "Hello World" in this page
bd.addltem("Hello World");

/I Print out the content of this page
hp.printHeader();

hp.print();

Notice the following additions:

« The “import oracle.html.*;” statement enables the application to access the Java
Cartridge classes. (For C/C++ programmers, this is analogous to #include files).

 The main() method uses the HTML classes to set up an HTML header, body, and
page.

As you continue to add functionality to your Java application, you should only test
those portions that pertain to the Java Cartridge within the Web Application Server.
Test standard JDK methods outside of the Web Application Server to take advantage
of the JDK debugger. You will need to comment out those portions of the application
that are specific to the Java Cartridge.

Developer’s Guide

Using the Java Cartridge

= Accessing HTTP Request Information

= Generating HTTP Response Information

= HtmlStream vs. System.out Stream

= Accessing WRB Services

= Accessing a Database

= Security

= Just-In-Time Compiler

= Dynamic HTML Generation

= Class Hierarchy

< HTML Features: A Summary

< Examples

2-8 Using Oracle Web Application Server™ Cartridges

« Extending the oracle.html Package
< Using Dynamic Content

< Extending the Java Cartridge

Accessing HTTP Request Information

Using the Java Cartridge

To perform various functions, such as checking proper access to a Web application, a
Web application may access HTTP request information. Such information is provided
by the HTTP class in the oracle.owas.wrb.services.http package. It provides
methods to access:

= HTTP request headers

= CGlI environment values

= URL parameters

= Client’s Accept-Charset and Accept-Language
Note: These are part of HTTP 1.1 request headers.

To access HTTP request information, retrieve the current request object with the
getRequest static method:

/I Obtains the current request object
HTTP request = HTTP.getRequest();

When a client makes an HTTP request, it can specify various attributes in the HTTP
request header. To retrieve HTTP request headers, use the getHeader method.

CGl is an standard interface that enables an external program to respond to an HTTP
request in a Web Application Server. In a Java Cartridge, CGI environment values can
be retrieved using the getCGIEnvironment method on an HTTPobject.

URL parameters are the query-string parameters in URLs in the Form’s input encoding
format. To access URL parameters, use the getURLParameter method.

With HTTP 1.1, aclient can specify the national language and character set it can accept
in an HTTP request. To determine Accept-Language and Accept-Charset of an HTTP
request, use the getAcceptLanguage or getAcceptCharset methods. A client
may list more than one Accept-Language or Accept-Charset, for each it may indicate
its preference. Use the getPreferedLanguage or getPreferedAcceptCharset
methods to determine the preferred language and character set.

The following code examples illustrate these methods:

/I Retrieves User-Agent HTTP header information
String userAgent = request.getHeader("User-Agent");

/I Retrieves CGI environment values
String remoteHost = request.getCGIEnvironment("REMOTE_HOST");

/I Retrieves URL parameters
String department = request.getURLParameter("DEPT");

/I Retrieves the most preferred Accept-Language of the request.

/I If no language is specified, use English.
String language = request.getPreferedAcceptLanguage("en");

2-9 Using Oracle Web Application Server™ Cartridges

Generating HTTP Response Information

When a Java application responds to an HTTP request, the response should be
preceded by HTTP response headers. The headers describe the properties of the
response, such as the MIME type, or the character set of the HTML page. Use the
print method in the HtmIStream object to send the headers, which will be returned
to the client through HtmlIStream

The following sample source code illustrates how to generate HTTP response headers:

/I Generates the MIME type and charset header of the HTTP response
HtmIStream responseStream = HtmlStream.theStream();
responseStream.printin("Content-type: text/html; charset=us-

ascii");

/I Ends the response header section with an empty line
responseStream.printin();

/I Returns the HTML page in the response body
HtmlPage hp = new HtmlIPage();

hp.print();
Notice the generation of an empty line that demarcates the header and the body

sections. Also notice that the HtmIPage class contains the method printHeader()
that you can invoke to generate the “content-type: text/html” header.

HtmlStream vs. System.out Stream

In the Java Cartridge, output written to System.out stream will be returned to the
client. However, the print and printin ~ methods of System.out stream are not
thread-safe. When two threads write to the output stream at the same time, the output
may be garbled. Oracle provides the HtmIStream class which synchronizes the
output when it is written by multiple threads. You should switch to HtmIStream to
return output to the client, although System.out stream is still supported for
backward compatibility.

Accessing WRB Services

Using the Java Cartridge

Since the Java Cartridge is executed in the WRB environment, Java applications
executed by it can access WRB services. The services are provided in native libraries,
and Java applications may utilize them in their native methods. For encapsulation
purposes, it is a good idea to write Java class wrappers around those services.

To utilize WRB services you need a handle to the WRB context, which can be obtained
from the getWRBContext static method of the WRRlass (in the oracle.owas.wrb
package). It returns the context handle as a Java long (a 64-bit number). Pass the handle
to your native method and cast it to a void* in C.

The following sample code illustrates how to retrieve WRB context in Java and invoke
WRB services in C.

/l Retrieve WRB context
long wrbContext = WRB.getWRBContext();

/I Invokes WRB API to log a message

2-10 Using Oracle Web Application Server™ Cartridges

Transaction Service

logMessage(wrbContext, "This is a test log message");

In this example, WRB service is invoked in the native code and is accessed through the
Java method with the following prototype:

void logMessage(long wrbContext, String message);

In the native implementation of the method, the WRB context handle is cast to a
void*

void MyClass_logMessage(struct HMyClass *this, int64_twrbContext,
Hjava_lang_String *message)
{
void *WRBContext = (void*)wrbContext;
WRB_LOGwriteMessage(WRBContext, ...);

}

The exact prototype of the native C function may be different on some platforms.

Note that getWRBContext throws the WRBNotRunningException when the
method is not invoked in the WRB environment.

As the WRB service is invoked natively, your application may use custom shared
libraries which need to be added to the Java Cartridge.

For Logger Service, the Java Web Toolkit provides a Java API to access the service. For
other services, you may consider writing your own wrapper classes to encapsulate the
services.

WRB provides the X/Open Transaction Service that enables the execution of a series
of operations in a transaction environment where operations can commit or rollback as
an atomic operation. During the course of operations when it is necessary to abort a
transaction, the Transaction Service guarantees that all operations that have been
carried out will be reverted. A common application of the Transaction Service is the
manipulation of multiple databases, where such operations should be carried out in a
“do-all-or-nothing” manner.

Note that the WRB Transaction Service is not enabled in Java-PL/SQL’s database
access. To use the Transaction Service with an Oracle database, you must use it with
your own database access mechanism.

Intercartridge Exchange Service

Using the Java Cartridge

The WRB InterCartridge Exchange Service (ICX) allows an application in one cartridge
to invoke an application in a different cartridge and retrieve output from it. With this
powerful communication service, you can produce sophisticated Web applications
with output from different cartridges, where each one is specialized in handling a
certain type of request or producing a certain type of results. For example, you can
write a Java application to search for the users logging on to a system, then invoke a
PL/SQL Agent to generate a report of the users’ information from the database and
include it in the HTML results.

The Web Application Server provides the following cartridges:

e PL/SQL Cartridge - for database programming with PL/SQL

= Java Cartridge - for general-purpose programming

2-11 Using Oracle Web Application Server™ Cartridges

Content Service

Logger Service

Sessions

Accessing a Database

Using the Java Cartridge

e LiveHTML Cartridge - for HTML with embedded commands
< Oracle Worlds Cartridge - for 3-dimensional modeling (VRML)
= Perl Cartridge - for system programming

= ODBC Cartridge - for database manipulation and query with heterogeneous
databases

The WRB Content Service provides a framework for a document repository where
documents can be stored, retrieved, and shared easily by the cartridges that can
publish them on the Web. It also allows cartridge developers to develop tools to
manage and administer the repository from the Web. In addition, attributes can be
attached to documents and queries can be performed on these attributes.

The WRB provides Logger Service for cartridges to write error, warning or other useful
messages to a central log repository (a file system or a database). Web listener and
WRB messages are also logged in the same repository. The Web Application Server
suite includes a Log Analyzer tool that can be used to analyze the log messages and
generate reports for auditing, performance-tuning, or other purposes.

See the Logger APIs section for a description of the severity levels.

In the WRB, multiple instances of a cartridge can execute at the same time. When the
WRB receives a request from a browser, it randomly picks an instance of the cartridge
which is available to handle the request. If the cartridge maintains an application state
on behalf of the request and needs any future request from the browser to be
dispatched to the same cartridge instance, you can utilize the WRB Session to tie the
browser to a particular instance of a cartridge. This effectively maintains a session
between a browser and a cartridge instance. To enable the Session for the Java
Cartridge, use the Web Application Server.

There are a number of ways to access a database from the Java Cartridge.

e For PL/SQL users, the cartridge provides a Java-PL/SQL toolkit that provides
tight integration between Java and PL/SQL. Database users can implement their
business logic in PL/SQL to capture their business activity and to ensure proper
use of the data in their databases.

With a code-generation tool, the Java-PL/SQL toolkit generates Java wrapper
classes for PL/SQL packages to invoke PL/SQL stored procedures as easily as
invoking methods in Java objects. This powerful tool allows database
programmers to leverage their existing investment in PL/SQL with Java
development.

= If your application consists primarily of direct SQL data manipulation, the JDBC
package may suit your needs better. It provides a standard interface to access
database from different vendors.

2-12 Using Oracle Web Application Server™ Cartridges

Java-PL/SQL is the mechanism provided by the Java Web Toolkit that allows you to
make PL/SQL calls from within your Java application.

Code Generation with pl2java utility

To provide such tight integration between Java and PL/SQL, the Java Web Toolkit
includes a code generation utility, called pl2java, that generates Java wrapper classes
for PL/SQL stored procedures. A wrapper class is a Java class containing methods to
call a PL/SQL package's procedures and functions, and serves as an interface between
the two languages. Stand-alone PL/SQL procedures and functions are all wrapped in
a single wrapper class.

pl2java is written in Java and can be found under the SORAWEB_HOME/java/bin
(UNIX) or %ORAWEB_HOME%\java\bin (NT) directory. To use pl2java, you must
have the Java Development Kit (JDK) installed and the Java interpreter executable
must be in your execution path. Also, pl2java requires a PL/SQL stored package
installed in the database where your PL/SQL packages are loaded. This package must
be installed by the database user SYS. The installation script is dbpkins.sql under
$SORAWEB_HOME/java/sgl (UNIX) or %ORAWEB_HOME%\java\sql (NT)
directory. (The de-installation script is dbpkdins.sql under the same directory.) Check
with your database administrator to make sure that the package has been installed.

Note: If you are connecting to Oracle8, use dbpkins8.sgl instead of dbpkins.sql. If you use
the wrong installation script, you will get the following error message:

Warning: Package Body created with compilation errors

To generate the Java wrapper class for your PL/SQL package, invoke pl2java from the
command prompt:

pl2java [flags] username/password[@connect-string] packagename...

pl2java creates a wrapper class for each PL/SQL package given as an argument to the
command. When your application is run, an instance of this class to interface to the
package is created. If you have stand-alone procedures or functions in your
applications, run pl2java, with the class flag as explained below. This creates a single
wrapper class for all the stand-alone procedures and functions you use.

The following table contains the arguments of pl2java:

Argument Description

username The name of the Oracle database user that owns the PL/SQL
packages

password The password for the Oracle user identified by username

connect-string The string that identifies the database where the packages are

located. This is the SQL*Net Connect String, as described in
Understanding SQL*Net. For local databases, omit this
connect-string. Instead, set the ORACLE_SID environment
variable to specify the local databases, as described in the
Oracle7 Server Administrator's Guide.

Using the Java Cartridge 2-13 Using Oracle Web Application Server™ Cartridges

Argument Description

package name... | A list of all the PL/SQL packages that your application
references in the schema identified by username. To wrap
stand-alone procedures and functions omit this component
and must use the “class” flag to name the class wrapper that
will be created. You should not include the containing schemas
in the package names. It is good practice to keep all the
packages, procedures, and functions you want to use in one
schema.

All of the flags that pl2java uses are optional except under certain conditions, class.
The following table contains the descriptions of the flags.

Flag Description
-help Provides help information
-d <dir> Sets the directory where the wrapper classes will be stored, the

default is the current directory

-package Sets the Java package to which the wrapper classes belong
<packagename>
-class <class> Sets the Java class to which the wrappers belong. If the pl2java

utility is run against packages, this flag is optional. Java classes
based on packages inherit by default the names of the
packages they encapsulate. This flag can override the default,
but it only applies to the first package named in the command.
If the wrappers are being created for stand-alone procedures
and functions, then this flag is mandatory, and all procedures
and functions named in the command are grouped into the
single class named by this flag.

The names of the classes follow the capitalization given in the command. Since PL/
SQL is not case-sensitive, this capitalization need not follow that actually given in the
PL/SQL code itself.

PL/SQL Data Type Mapping in Java

Using the Java Cartridge

One of the tasks in enabling PL/SQL calls in Java is determining the PL/SQL data type
mapping in Java, in particular how PL/SQL data types are to be represented in Java.
Unlike Java basic data types, a PL/SQL data type can be null, which means that it does
not have a value assigned to it. Therefore, a Java data type cannot represent a PL/SQL
data type without losing the null property. And it is natural to use Java wrapper classes
to represent PL/SQL data types. These wrapper classes, all belonging to the
oracle.plsql package, are derived from the base PValue base class, which
encapsulates the null attribute of PL/SQL values. Each individually derived wrapper
class represents one or more related PL/SQL data type. The following table shows a
list of Java wrapper classes of different PL/SQL data types:

PL/SQL data type Java wrapper class
BINARY_INTEGER (+ NATURAL, POSITIVE) Pinteger
2-14 Using Oracle Web Application Server™ Cartridges

PL/SQL data type Java wrapper class
NUMBER (+ DEC, DECIMAL, DOUBLE PRECISION, | PDouble

FLOAT, INTEGER, INT, NUMERIC, REAL,

SMALLINT)

CHAR(n) (+ CHARACTER, STRING) PStringBuffer
VARCHAR2(n) (+ VARCHAR) PStringBuffer
LONG PStringBuffer
RAW (n) PByteArray

LONG RAW PByteArray
BOOLEAN PBoolean

DATE PDate

PL/SQL table Java array (not a class)

When you pass a value to a PL/SQL call, you create a wrapper object for that PL/SQL
data type and store the value in it. When the call returns with an output parameter, you
retrieve the value from the wrapper object.

There are certain PL/SQL data types that the pl2java utility cannot encapsulate. These
are shown below, along with the recommended substitutes, if any:

Disallowed PL/SQL data type Substitute PL/SQL data type

POSITIVE BINARY INTEGER

PL/SQL table of BINARY INTEGER, | PL/SQL table of NUMBER
NATURAL or POSITIVE

PL/SQL table of LONG PL/SQL table of CHAR or VARCHAR2

PL/SQL table of BOOLEAN PL/SQL table of NUMBER, treat 0 as
false, 1 as true

ROWID none

MSLABEL none

PL/SQL table of ROWID none

PL/SQL table of MSLABEL none

PL/SQL Procedure Mapping in Java Wrapper Classes

Using the Java Cartridge

The Java wrapper classes generated by pl2java provide a convenient way to invoke
PL/SQL stored procedures in Java. For each PL/SQL package you specify, pl2java
generates a Java wrapper class, which contains a wrapper method for each procedure
or function in the PL/SQL package. The prototype of the wrapper method will be the
same as the PL/SQL procedure or function it wraps. This provides an “object” view of
PL/SQL packages and allows PL/SQL stored procedures be called seamlessly.

2-15 Using Oracle Web Application Server™ Cartridges

For example, consider the following Employee PL/SQL package that contains a
function and a procedure:

package Employee as

type string_table is table of varchar2(30) index by
binary_integer;

type number_table is table of number(10) index by
binary_integer;

function count_employees(dept_name in varchar2) return number;
procedure list_employees(

dept_name in varchar2,

employee_name out string_table,

employee_no out number_table

)i

end;
Run pl2java to generate the wrapper class:
pl2java scott/tiger@db Employee
The wrapper class Employee will be generated which has an interface like this:

class Employee {
public Employee(Session dbSession) { ... }
public PDouble count_employees(PStringBuffer dept_name){... }
public void list_employees(
PStringBuffer dept_name,
PStringBuffer employee_name][],
PDouble employee_nol[]

){}
}

When a PL/SQL function returns a value whose size is variable (for example
VARCHAR2, LONG, RAW, or LONG RAW), the size of the value is set by default to
255 bytes. In the wrapper class, you may change the default size by setting the
following data member of the wrapper class for the PL/SQL function in question:

<function name>_<overload number>_return_length

The overload number is the number of other functions that exist with the same name.
For information about overloading of functions in PL/SQL, see “Overloading” in
“Using the PL/SQL Cartridge”. You can find the overload number of a function is by
using the Oracle7 Server standard package DBMS_DESCRIBE, as covered in the
Oracle7 Server Administrator's Guide. For non-overloaded functions, the overload
number is 0.

For example, assume the following PL/SQL package:

package Employee as
function employee_name (
employee_number in number
) return varchar2;
end;

The wrapper class Employee contains the data member
employee_name_0_return_length which can be overridden:

class Employee {

Using the Java Cartridge 2-16 Using Oracle Web Application Server™ Cartridges

public PStringBuffer employee_name(PDouble employee_number);
public int employee_name_0_return_length = 255;

}

Similarly, if the function returns a PL/SQL table (PL/SQL array), you can specify the
length of the array with the data member of the wrapper class:

<function name>_<overload number>_return_arraylength

Making Connection to the Database

Database connection is encapsulated by the Session class in the oracle.rdbms
package. The Session class provides methods to perform common database tasks,
such as logon, logoff, commit, rollback and so on. Before you connect to an Oracle
database, you need to define environment properties, such as the ORACLE_HOME
environment variable. Retrieve ORACLE_HOME of Web Application Server in the
Java Cartridge’s system properties “oracleHome ” with the System.getProperty
method. After defining Oracle environment properties, instantiate a Session object and
logon to the database. The following sample code illustrates how this is done:

/I Define ORACLE_HOME
Session.setProperty("ORACLE_HOME",
System.getProperty(“oracleHome"));

/I Creates a new database session and logon
Session session = new Session();

session.logon("scott", "tiger", "sales_db");

Invoking PL/SQL Stored Procedures and Passing PL/SQL Values with PValue Classes

Using the Java Cartridge

To invoke a PL/SQL stored procedure, you need to instantiate the wrapper class for
the PL/SQL package (or for anonymous PL/SQL procedures) with a Session object.
This prepares the object for the execution of the PL/SQL package in the session. If you
want to invoke the PL/SQL package in multiple database sessions, you need to
instantiate the wrapper class for each one of them. For example, assume the Employee
package. You would instantiate the Employee class like this:

/I Instantiate Employee wrapper class:
Employee emp = new Employee(session);

When you invoke a PL/SQL procedure that takes parameters, you need to pass the
values to the parameters by storing them in PL/SQL data type wrapper objects.
Instantiate these wrapper objects and set the values with setValue method and pass
these objects to the wrapper method as parameters. To pass a PL/SQL null value, use
setNull method on the wrapper object to set the value to null.

When a PL/SQL function returns, it may return some values in its out parameters or
return value. To retrieve the return values, use the get-value methods of the wrapper
classes. For example, use the intValue method of the Pinteger class to retrieve an
int value. Note that when a PL/SQL return value is null, the get-value method throws
a NullValueException . This NullValueException signifies a null value, and
you should handle this exception properly with a try-catch block. Alternatively, you
can first use the isNull method to determine if the value is null, and invoke the get-
value method when it is not null.

The following sample code illustrates how to invoke a PL/SQL procedure and pass
parameters in and out:

2-17 Using Oracle Web Application Server™ Cartridges

/I Instantiate a PStringBuffer to pass a string to the PL/SQL
procedure

PStringBuffer pDeptName = new PStringBuffer(30);
pDeptName.setValue("Sales");

/I Invokes the PL/SQL procedure
PDouble pEmployeeCount = employee.count_employees(pDeptName);

/I Retrieves the return value
if (\pEmployeeCount.isNull())
int employeeCount = pEmployeeCount.intValue();

Note that when a PL/SQL parameter is a PL/SQL table, either an in or an out
parameter, you need to create the Java array as well as the elements in the array. For
example:

/[Creates a PL/SQL table parameter

PStringBuffer pEmployeeNames[] = new PStringBuffer[30];

for(int = 0; i < pEmployeeNames.length; i++)
pEmployeeNames][i] = new PStringBuffer(80);

/I Invokes a PL/SQL procedure
employee.list_employees(pEmployeeNames);

Note that all wrapper classes that encapsulate PL/SQL values have a toString
method and therefore can be concatenated with Java Strings. For example, you can use
the pEmployeeCount object from above directly in a string concatenation:

/I Output the employee count
System.out.print(“There are " + pEmployeeCount + " employees.");

Handling Database Errors with ServerException

Java-PL/SQL provides tight integration between Java and PL/SQL not only in the way
PL/SQL procedures are invoked, but also in the way database exception is handled.
When an error occurs during a database operation, an exception is thrown. The
exception is returned to Java and is thrown as a ServerException . For example,
when a no-data-found exception occurs in a SQL select statement, a

ServerException is thrown. You can use the getSqglcode and getSqglerrm
methods to retrieve the SQL code and error message of the exception.

Most methods of the Session class as well as the wrapper methods in PL/SQL
wrapper classes throws ServerException . You should catch the exception by
putting the calls in a try-catch block.

Freeing Database Sessions

Using the Java Cartridge

Java provides a garbage collector which frees up objects when they are no longer
needed. When a database session is no longer needed and becomes garbage, the
session will be disconnected before it is garbage-collected. However, the garbage
collector does not guarantee that any garbage objects will be collected immediately. In
fact, Java's garbage collector waits until the program is idle, which for a busy Web site
could be infrequently, or until resources are low, before it collects garbage objects.
Therefore, you should try to logoff from the database when the session is no longer
needed to free up database resources explicitly.

2-18 Using Oracle Web Application Server™ Cartridges

JDBC

For documentation on JDBC, see $ORACLE_HOME/jdbcoci73/doc/contents.htm.

Maintaining Persistent State

Using the Java Cartridge

The Java Cartridge offers a number of benefits over running Java applications with
Sun’s Java VM as a CGI program. Besides the performance improvement through the
reduction of process start-up cost, the Java Cartridge allows Java applications to retain
their application state. Values stored in static data member variables are preserved
across multiple HTTP requests. The following example illustrates how to write a Java
application that counts the number of requests a Java application has handled since it
was started:

import oracle.html.*;
class HelloWorld

{

I/l The value stored in static data member is preserved across
// multiple requests.
private static int count = 0;

public static void main (String args|[])

{

HtmIStream out = HtmIStream.theStream();
out.printin("Content-type: text/htmi\n");

count++;
out.printin("This application has been accessed " + count +
" times since it was started.");

}
}

By preserving values in static data members, you may be able to improve the
performance of your Java application in some situations. For example, you can open a
database connection and maintain the connection open in a static data member. By
doing so, you can avoid opening the database connection every time a request is
handled, which is a time-consuming operation. The following example shows how this
can be done:

import oracle.html.*;
import oracle.rdbms.*;
import oracle.plsql.*;

class EmployeeReport

{

/I The database connection can be maintained open across multiple
// requests by storing it in a static data member.
private static Session session = null;

public static void main (String argsl[])

{

HtmlStream out = HtmIStream.theStream();
out.printin("Content-type: text/htmi\n");

/I If the database session has never been opened, open it

2-19 Using Oracle Web Application Server™ Cartridges

/I (once and for all). Otherwise, we just use the connection
// we opened in the previous request.
if (session == null)

session = new Session("scott", "tiger", "db");

[/l Performance database operation

// *DO NOT* logoff from the section by the end of your application.
/' We will reuse the connection in the next request.

}
}

Database sessions that are left opened by the time the Java Cartridge shuts down will
be logged off by the cartridge. Notice that each Java Cartridge instance maintains these
data members within itself. They are not shared among the cartridge instances. In the
first example, each Java Cartridge instance has its own count data member. In the
second example, each Java Cartridge instance maintains one open database
connection.

Java Runtime Configuration Flags

In addition to the usual configuration attributes, the Java Cartridge supports the
runtime flags of Sun’s Java Interpreter via similarly named attributes in the [JAVA]
section of Web Request Broker configuration. The following table lists the names and
valid values of these flags:

Config flag in [JAVA] Sun’s Java Interpreter flag Legal value

VERBOSE -verbose true or false
NOASYNCGC -noasyncgc true or false
VERBOSEGC -verbosegc true or false
TRACEGC -tracegc true or false
CHECKSOURCE -checksource true or false
C_STACK -SS A number followed by

M, m, K, or k, where M
or m indicates
megabytes, and K or k
indicates kilobytes.

JAVA STACK -0SS A number followed by
M, m, K, or k, where M
or m indicates
megabytes, and K or k
indicates kilobytes.

INITIAL_HEAP -ms A number followed by
M, m, K, or k, where M
or m indicates
megabytes, and K or k
indicates kilobytes.

Using the Java Cartridge 2-20 Using Oracle Web Application Server™ Cartridges

Security

Config flag in [JAVA] Sun’s Java Interpreter flag Legal value

MAX_HEAP -mx A number followed by
M, m, K, or k, where M
or m indicates
megabytes, and K or k
indicates kilobytes.

PROF -prof true or false
VERIFY -verify true or false
VERIFYREMOTE -verifyremote true or false
NOVERIFY -noverify true or false
SYSTEM_PROPERTY -D= prop=value

Note the following:

e Sun’s “-debug” flag is not supported.
< Multiple “SYSTEM_PROPERTY” flags can be used.

= “true/false” values are case-sensitive.

For example, if you want to turn off the asynchronous garbage collector, set maximum
heap size to 32 Mbytes and define system properties user.default and
password.default , add these flags to the Web Request Broker configuration:

[JAVA]

CLASSPATH =..

LD_LIBRARY_PATH = ...

NOASYNCGC = true

MAX_HEAP =32M

SYSTEM_PROPERTY = user.default=scott
SYSTEM_PROPERTY = password.default=tiger

Java is designed to be a secure execution environment where programs can be
executed with a set of security restriction boundaries. When a Java program is
executed, every operation is monitored to ensure that the program is behaving
properly. If the Java runtime environment discovers that a program is trying to do an
operation that can cause a security breach, it stops the program.

Java Applets and Applications

Using the Java Cartridge

Java programs are divided into two categories: applets and applications. A Java applet
is a program that is downloaded from a Web Application Server by a browser and is
executed on the client side. Since the applet can be downloaded from an unknown web
site across an insecure network, the applet cannot be trusted. To ensure that the applet
will not cause a security breach, Java executes the applet while monitoring it with the
Security Manager. Whenever the applet tries to perform an operation which can
compromise security, such as reading a file in the local machine, it checks that the
applet has the appropriate privilege to perform such an operation. If the applet does
not have such a privilege, a security exception is thrown and the operation is aborted.

2-21 Using Oracle Web Application Server™ Cartridges

A Java application is a trusted program that usually resides on the local machine.
When executed, it is granted access to all privileged operations without the monitor of
the Security Manager. It is the responsibility of the user who executes a Java
application to ensure that the Java program is trustworthy.

Programs executed by the cartridge are Java applications. The Security Manager is not
invoked to ensure proper behavior by the applications. This allows Java applications
maximum freedom to execute. However, without security restriction, poorly designed
Java applications may open security holes. Therefore, users should pay particular
attention when they implement and deploy applications with the Java Cartridge.

Java Application Protection by Partitioning Virtual Paths

Using the Java Cartridge

As mentioned above, when the Java Cartridge executes Java applications, it does not
impose security restriction on them. Therefore, you are strongly advised to consider
implementing access control to Java applications. You can utilize the WRB
authorization mechanism to protect the Java Cartridge from unauthorized access.

To protect the Java Cartridge with the WRB, simply protect all virtual paths which map
to the Java Cartridge. That is, add all virtual paths to the Application Protection section
of WRB configuration, and apply appropriate authorization or protection schemes to
them.

However, not all Java applications are intended to be protected. If you have Java
applications which are open to public access, you should create another Java Cartridge
to run those public applications. You can add one more entry for the Java Cartridge in
the Application section of WRB configuration.

JAVA ... SORAWEB_HOME/lib/libjava.so (UNIX)
JAVA ... %YORAWEB_HOME%\lib\libjava.so (NT)
SECURED_JAVA ... SORAWEB_HOME/lib/libjava.so (UNIX)
SECURED_JAVA ... %hORAWEB_HOME%\lib\libjava.so (NT)

And in the Virtual Path section, add virtual paths for the secured Java Cartridge:

liava JAVA (UNIX)

\java JAVA (NT

/secured/java SECURED_JAVA (UNIX)
\secured\java SECURED_JAVA (NT)

Then, protect all the virtual paths that map to SECURED_JAVAn the Application
Protection section of WRB configuration:

/secured/java Basic(Admin Server) (UNIX)
\secured\java Basic(Admin Server) (NT)

And finally, duplicate the configuration of the Java Cartridge named JAVAfor the one
named SECURED_JAVAHowever, these two Java Cartridges must have separate class
directories in their CLASSPATH setting. Put the public Java application classes under
JAVA's class directory and put the protected ones under the SECURED_JAVA class
directory. For example, Java Cartridge’s CLASSPATH may be:

CLASSPATH = $ORAWEB_HOME/java/classes.zip;$ORAWEB_HOME/java/
oracle.zip;$ORAWEB_HOME/java (UNIX)

CLASSPATH =

%ORAWEB_HOME%\java\classes.zip;%0RAWEB_HOME%\java\oracle.zip;%0RA
WEB_HOME%\java (NT)

2-22 Using Oracle Web Application Server™ Cartridges

NLS Support

while that for SECURED_JAVAnust contain a different class directory:

CLASSPATH = $ORAWEB_HOME/java/classes.zip;$ORAWEB_HOME/java/
oracle.zip;$ORAWEB_HOME/secured_java (UNIX)

CLASSPATH = %ORAWEB_HOME%\java/
classes.zip;%ORAWEB_HOME%\java\oracle.zip;%ORAWEB_HOME%\secured_j
ava (NT)

Note that if the two cartridges share class directories, it is possible to bypass the
security check by invoking the protected Java application through a non-protected
virtual path.

Similarly, if you want to have two or more different protection schemes for your Java
applications, you may create as many different Java Cartridges and protect their
corresponding virtual paths with different protection schemes.

The Java Cartridge provides the following NLS features:

= The pl2java command supports databases which use non-ASCII character sets.
Characters in different languages can now be exchanged safely with the
database and converted to Unicode, the character set used internally by Java.

= Acharacter set conversion library is provided in Oracle's Java Web Toolkit. In
the package oracle.owas.nls, the class CharacterSet is provided to convert
messages from one character set to another (or to Unicode). Such character sets
can be retrieved from the CharacterSetManager class.

= Inthe HTTP class, a set of methods is provided to access language and the
character set preference of the browser. This preference is passed by using the
new HTTP 1.1 headers, which are supported by the latest browsers like Netscape
Navigator 3.0 and Microsoft Internet Explorer 3.0. You can use the
getAcceptLanguage and getAcceptCharset methods to retrieve the language
and character set acceptable to the client.

= Oracle's NLS environment is controlled by the environment variable
NLS_LANG. In the package oracle.owas.nls, the class NLS_LANG is provided
to utilize the language and character set preference of the client and define the
NLS_LANG environment to control the NLS behavior of the database.

For details on developing a Java Application for NLS environments, please check the
NLSSample Java example which illustrates how NLS can be handled in the Java Web
Application's interaction with the client browser and the database. This sample is
available on the Oracle Web Application Server's home page.

Just-In-Time Compiler

Using the Java Cartridge

To provide portability on many hardware architecture platforms, Java uses an
interpreter that compiles Java programs into bytecodes that are instructions of a virtual
machine (the Java Virtual Machine). Each platform implements the virtual machine by
software emulation, which interprets the virtual machine instructions when a Java
program is executed. Therefore, the bytecodes compiled from a Java program do not
depend on any particular platform and they can be executed on any machine.

2-23 Using Oracle Web Application Server™ Cartridges

Performance

Using the Java Cartridge

Just-in-Time Compiler

Java
Java Virtual
Source .
Machine
N ¢ Bytecode
~

~
Cached ™~ JIT
Bytecode Compiler

¢ Native Machine Instructions

Local
Machine

A Java program is usually executed more slowly than the same program compiled to
native machine instructions. This is the performance penalty paid to achieve
portability.

With new compilation technology, it is possible to take a series of virtual machine
instruction codes and recompile them into native machine instructions of the hardware
platform. By doing so, the same set of codes can be executed much faster. The cost of
this speed-up is the time spent to recompile the instructions.

Just-In-Time (JIT) compilation is the lazy recompilation of the virtual machine
instructions into native machine instructions at the moment when the Java program is
about to be executed. Recompilation needs to occur once, and the recompiled
instructions can be executed every time. Many JIT compilers recompile virtual
machine instructions only once after the corresponding Java method is invoked for the
first time, and cache the recompiled instructions until they exit. The Java interpreter
defines a standard interface so that any JIT compiler can be plugged into it.

The JIT compiler is usually provided as a dynamic-linked library and you should put
the library in one of the LD_LIBRARY_PATH directories. To enable the JIT compiler,
add a JAVA_COMPILER environment variable which should contain the name of the
library. For example, the library of SunSoft’s JIT compiler is libsunwjit.so and you
should have JAVA COMPILER as:

LD_LIBRARY_PATH = ...

JAVA_COMPILER = sunwjit

(Note that only the Sun JIT is supported.)

JIT compilation should provide the single most significant performance improvement.
A few-fold speedup is common. However, it may cause a degradation in performance
in some situations when it takes longer to recompile byte codes than to interpret the

2-24 Using Oracle Web Application Server™ Cartridges

byte codes directly. Therefore, you should compare the performance of your
application executed with and without JIT compiler to determine the best option.

In addition to JIT compilers, consider re-implementing some heavily used methods in
native code, which execute more efficiently than interpreted instructions.

Dynamic HTML Generation

The oracle.html package allows you to generate HTML pages dynamically. It hides the
details of HTML so that you can focus on the actual layout and format of your HTML
pages. There are numerous benefits provided by this package:

Using the Java Cartridge

Ease of use - This package enables Java programmers to dynamically compose
HTML 3.2-compliant pages with CSS1 (Cascading Style Sheet, Level 1) support
without having to learn either HTML or CSS1. Every markup tag has been
encapsulated within Java classes in an object-oriented manner. To the Java
programmer, an HTML page is simply an object that contains various kinds of
markup objects. A markup component/object can be simple (a piece of text) or
complex (a dynamically sized table with pictures/links within each table cell).

Extensibility - Due to the rapid pace of evolution in the HTML space there are
bound to be new markup elements that are not supported by even the latest
release of this package. To accommodate this, our package can be extended. Java
programmers can write their own Java components that subclass from one of the
many classes in this package to provide for the new markup tags, and these new
components will be treated just like any built-in components/objects via
polymorphism. Furthermore, any Java class that implements the interface
IHtmlItem will be treated as a first-class member of the HTML object family.

Efficiency - The package deals with overheads and memory consumption in a
sensible manner.

Intelligence - One of the major headaches faced by the HTML content
programmer/designer today is to deal with the vast number of browsers
available and the various incompatibilities these browsers introduce in their
handling of HTML. Our package is designed to deal with these issues in an
intelligent manner. Part of the package is a mini-database that stores useful
information about various existing browsers. Our components are designed to
take advantage of this information so that the generated HTML is optimized for
the browser that is requesting this page now. Since this capability is built-in, this
means one less detail to which the Java programmers need to attend.

Up-to-date support for W3C markup standards - Oracle is committed to
providing up-to-date and comprehensive support for standard HTML and CSS1
in the industry.

2-25 Using Oracle Web Application Server™ Cartridges

Class Hierarchy

The following diagram illustrates the hierarchy of the major classes in the package.

IHtmlltem
Item HtmIHead HtmlPage Container Style StyleElement
Compoundltem HtmIBody
Form
List
—| Table

The most important piece in this package is the interface IHtmlltem. This interface
defines the basic requirements and behaviors for any HTML component. This enables
polymorphic treatment of any HTML components inside this package. This interface
defines methods for converting content of any component into a String object
(toString) and printing/writing content of the object as HTML to any arbitrary Output
stream object (print). Any custom object should implement this interface so that it can
benefit the most from this package.

To make creating custom HTML components easy, Oracle provides a default
implementation of the interface in class IHtmlItemImpl. This class also serves as the
base class of virtually all other classes in this package.

Another basic building block in the oracle.html package is the Item class. This
abstract class provides useful markup capabilities for any component that can itself be
regarded as a markup component (a Simpleltem object — an object that deals with
Strings — is also an Item, which means that it immediately possesses capabilities
usually associated with a markup component such as color and font size). This class
serves as a base class only and cannot be used to instantiate objects.

Structurally, the two major container classes — Compoundltem and Container —
provide the basic infrastructure for any complex HTML component that may relate to
other HTML components via containment. Class CompoundItem derives from class
Item, which means an object of this type also inherits the many useful markup
capabilities provided by class Item. Many classes in this package use (List) or inherit
from (Form) this class to take advantage of this. In contrast, the Container class is a
light-weight version of CompoundItem, except that it does not derive from class Item.

Using the Java Cartridge 2-26 Using Oracle Web Application Server™ Cartridges

Thus objects of this type have less overhead, but do not possess markup capabilities.
Notable classes that derive from Container class include HtmIBody and ImageMap.

In order to construct a HTML page dynamically, you need to (in most cases) instantiate
objects from the following classes: HtmlHead, HtmIBody, and HtmIPage. To add Style
Sheet support, you may want to use classes Style and StyleElement. Oracle provides
hooks into various components (e.g. classes Item and HtmlHead) to make it easy for
you to implement CSS1.

There are many classes in this package that make creating various HTML objects as
simple as possible. Those who are not familiar with HTML should use the following
classes: List, Form, and Table (or DynamicTable).

In some cases, interfaces are used as a grouping mechanism for some attributes of
existing HTML tags. The purpose of these interfaces is to make it easier for Java
programmers to specify values of various attributes. Examples of such interfaces are
IVAlign and ITableRules.

HTML Features: A Summary

Using the Java Cartridge

This section presents a quick summary of major HTML features supported in this
package:

The following HTML elements can be generated by the corresponding Java classes:

HTML Element Corresponding Java Class Description
<HTML> HtmlPage Page section
<HEAD> HtmlHead Head section
<BODY> HtmIBody Body section
<A> Anchor - for link target; Anchor

Link - for hypertext link
<APPLET> Applet Client-side Java applet
<l..> Comment Comment
<DL> DefinitionList Definition list
<DIR> DirectoryL.ist Directory list
<TABLE> DynamicTable Dynamic table
 Font Font
<FORM> Form Form
<FRAME>, Frame; Frameset Frames
<FRAMESET>
<H[1-6]> Heading Heading level
<HR> HorizontalRule Horizontal rule
 Image Image

 LineBreak Line break
<INPUT> FormElement Form input element

2-27

Using Oracle Web Application Server™ Cartridges

HTML Element Corresponding Java Class Description

<PRE> PreFormat Preformat

<STYLE> Style Style

Examples
Example: “Hello World”

/I Import dynamic HTML package into current namespace
import oracle.html.*;

/I Class Helloworld
class HelloWorld {
/I Main Method: entry point for any server-side Java App
public static void main(String argsl[]) {
/I Creates an HtmlPage object
HtmlPage hp = new HtmIPage("Hello World");

/I Adds a string object ("Hello World!") to the page
hp.getBody().addItem("Hello World!");

/I Prints header info to output stream
hp.printHeader();
/I Prints out content of this page
hp.print();
}

}

When this program is compiled and executed on the command-line (outside of the
WRB environment), the following output is generated (assume “>" is an interactive
shell prompt):

>javac HelloWorld.java // compile class defined as above
>java HelloWorld /l invoke method main in class Helloworld
Content-type: text/html

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<l-- Generated by Oracle's Dynamic HTML Generation Package -->
<HTML>

<HEAD>

<TITLE>Hello World</TITLE>

</HEAD>

<BODY>

Hello World!</BODY>

</HTML>

In HTTP parlance, the first two lines are known as the HTTP Response headers of the
document that is to be returned to the user-agent (usually a browser).

Following that are two lines (enclosed by “<!” and “>"). The first line declares the
DOCTYPE as compliant with HTML 3.2 (as specified and recommended by W3C). The
second line is a comment stating this document is generated using Oracle Corp’s
Dynamic HTML generation package.

The rest is standard HTML; the HTML tags “<HTML>" and “</HTML>" denote the
beginning and ending of this HTML document. Each HTML document is composed of

Using the Java Cartridge

2-28 Using Oracle Web Application Server™ Cartridges

HEAD and BODY sections (denoted by tags “<HEAD>...</HEAD>" and
“<BODY>...</BODY>" respectively). The content of this document is the simple
string: “Hello World!” and this will be the only text that appears on the browser.

As you might have noticed, when this package is used outside of the WRB
environment, all output is redirected to standard output. This doesn’t mean, however,
that Oracle uses the same OutputStream as System.out — Oracle actually provides its
own stream for redirecting output back to the user-agent when this class is executed
inside WRB environment.

Example: Simple Markup

Using the Java Cartridge

It is essential for a package that encapsulates a markup language to support adding
markup properties to text and other objects. As mentioned earlier, most markup
support is defined in the abstract class Item. It defines methods like setltal() (set
the Italic/1 markup attribute of the target object) and setEmphasis() (set the
Emphasis/EM markup attribute of the target object) which enable the Java
programmer to deal with each HTML component in an object-oriented manner: an
object with markup attributes that can be individually set and cleared. What follows is
asimple example that uses various methods from class Item to accomplish the desired
result:

import oracle.html.*;

I

/I This simple demo demonstrates various markup capibilities
/I of this package

1

class SimpleMarkup {

/I the entry point of this program
public static void main(String args[])
{
/I Creates an HtmlPage object
HtmIPage hp = new HtmlIPage();

/I Gets default HtmIBody object from HtmIPage object
HtmIBody bd = hp.getBody();

/I Adds a banner-like heading to this page

bd.addltem(new Simpleltem("Welcome! Java
programmers!").setHeading(1));

// Adds a "LineBreak" to indicate end-of-line to the browser

bd.addltem(Simpleltem.LineBreak);

/I Prints the text string "Hello World!" in different Heading
formats
for (int i=2; i<5; i++) {
bd.addltem(new Simpleltem("Hello World!").setHeading(i));
bd.addltem(Simpleltem.LineBreak);

}

/I Prints the text string "Java is cool!" in BOLD-faced font
bd.addltem(new Simpleltem("Java is cool!").setBold());
bd.addltem(Simpleltem.LineBreak);

/I Print out header information

2-29 Using Oracle Web Application Server™ Cartridges

hp.printHeader();
/l Print out content of this page
hp.print();
}
}

When the above program is compiled and executed outside of the WRB environment
the following output is generated:

Content-type: text/html

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Draft/EN">
<!l-- Generated by Oracle's Dynamic HTML Generation Package -->
<HTML>

<HEAD>

</HEAD>

<BODY>

<H1>Welcome! Java programmers!</H1>

<H2>Hello World!</H2>

<H3>Hello World!</H3>

<H4>Hello World!</H4>

Java is cool!

</BODY>

</HTML>

This is what you will see:

/~ Welcome! Java programmers! N
Hello World!
Hello World!
Hello World!

Java is cool!

- /

Example: HTML Form

Using the Java Cartridge

Once you have begun using Java to write Web-based server-side applications, you will
soon find the need to generate results based on the input of users (an example would
be to present a catalog of sale items to the user according to the user’s choice of
categories). There are many ways to accomplish this, but by far the most common is by
using an HTML Form that has the capability to present the user with several types of
input elements such as text fields, checkboxes and radio buttons, and when a “submit”
element is invoked, the browser sends the user input to a URL specified by the Form
itself.

What follows is a code fragment (not a complete program):

/I Creates a Form object

Form form = new Form("GET", "http://www.myhome.com/wrb/doit");
/I Creates a TextField object and adds to the form
form.addltem(new TextField("Name"));

/I Creates a Submit object and adds to form

2-30 Using Oracle Web Application Server™ Cartridges

Example: Lists

Example: Table

form.addltem(new Submit("foo", "Submit!"));
/I Adds the form object to the HtmIBody object
body.addltem(form);

What this code fragment does is to generate the appropriate HTML so that a text field
will be presented to the user, and when the user presses the “Submit!” button, the
content of the text field will be sent to the specified URL. For more information, please
refer to the W3C HTML 3.2 reference specification at

http:/www.w3.org/pub/WWW/MarkUp/Wilbur

In HTML, there are two principle ways to present information to the user in a tabular
manner: List and Table. The following code fragment illustrates how to construct an
ordered list of text items:

/I Create an OrderedList Object

OrderedList orderedlist = new OrderedList();

/I Add new items to the list

orderedlist.addIitem(new Simpleltem("ltem 1"));
orderedlist.addIitem(new Simpleltem("ltem 2"));

/I Add the list object to the body (assuming it already exists)
body.addltem(orderedlist);

The following code fragment illustrates how to create a table using the DynamicTable
class:

/I Some user-defined functions
Product product = getFirstProduct();
/Il create a dynamic table with 2 columns
DynamicTable tab = new DynamicTable(2);
/I create the rows and add them to the table
TableRow rows[] = new TableRow[NUM_ROWS];
for (int i=0; i< NUM_ROWS; i++) {

/I allocate TableRow

rows[i] = new TableRow();

/I populate row with data

rows][i].addCell(new TableHeaderCell(product.getProductID()))

.addCell(new

TableDataCell(product.getProductDescription()))

/I add them to Table

tab.addRow(rowsli]);

}

Extending the oracle.html Package

Using the Java Cartridge

You can easily create your own HTML components by deriving them from the
Compoundltem or Container classes. You can create high-level HTML classes that
define particular layout styles and use them as templates. For example, you can create
a CompanyBanner class that has a company logo, a hyperlink to its home page, and
another hyperlink to its copyright notice. Each time when you want to include a
company banner in any page, you create a CompanyBanner object, and fill in the
company logo GIF file and the two URLSs for the hyperlinks. Here is a sample
CompanyBanner class:

2-31 Using Oracle Web Application Server™ Cartridges

class CompanyBanner extends Compounditem {
/I Constructor (takes a logoGIF and 2 links as arguments)
public CompanyBanner (String logoGIF, String homepageLink,
String copyrightLink) {
addltem(new Link(homepageLink,
new Image(logoGIF, "Company Logo", IVAlign.TOP, true)));
addltem(new Link(copyrightLink, "Copyright Notice"));
}
}

Then, you can simply add a CompanyBanner to your source code to generate HTML:

/I Adds a company banner
bd.addltem(new CompanyBanner("img/oracle.gif",
"http://www.oracle.com",
"http://www.oracle.com/copyright.html");

You can create HTML classes that encompass computation logic. For example, you can
create a BalanceSheet class that performs a query of a customer’s purchase
information from a database, and formats the results in HTML. To create a balance
sheet for a customer, simply instantiate a BalanceSheet object and specify the
customer’s identifier. Then add the BalanceSheet item to your HtmIPage .

Using Dynamic Content

Using the Java Cartridge

To many WWW content designer (including some Java programmers), the thought of
programmatically generating HTML seems absurd: there already are great tools tailored
to generate HTML in a WYSIWYG ("what-you-see-is-what-you-get") environment —
why add an extra level of complexity to the process by forcing them to use yet another
language to generate HTML? To others, the concern is more pragmatic in nature: |

already have lots of nicely designed HTML pages throughout my web site — how do
I add dynamic content to my web pages without re-creating what is already there?

To address these concerns, Oracle provides a class in this package that enables the Web
content designers to use their favorite tools to create HTML pages with the right look-
and-feel and then add dynamic content to these pages.

The process is easy:

1. Use your favorite tool to create the HTML with the right look and feel.

2. In places where you would like to have dynamic content added to the page,
insert the following tag into the tool-generated HTML.:

<WRB_INC NAME="dynltem1" VALUE="defaultValue">

3. Import the HTML template (i.e. the tool-generated HTML plus tags added in
step 2) into Java by using class HtmlFile.

4. Dynamically insert content into HTML template (or “legacy HTML pages”) by
using HtmlFile’s setitemAt method.

The process allows you to have the flexibility to use your favorite Web design tool to
generate the static part of the content while benefiting from the dynamic nature of
server-side Java applications.

Here is a simple diagram that illustrates the process:

2-32 Using Oracle Web Application Server™ Cartridges

<HTML> Artist: xyz
 Price: $100
O + <WRB_INC Name=..> = O
- —
ZA <ADDRESS>XYX... ZA

</HTML>

Use GUI tool to generate Insert WRB_INC tags to use HtmlFile class

HTML template template to dynamically replace

content at runtime

Extending the Java Cartridge

One strength of Java is the ability to extend its functionality by adding classes and
packages to it. You can implement sophisticated, Java-based Web applications by
purchasing Java packages from third-parties and by writing classes yourself. Well-
designed Java packages allow you to snap them into positions easily and minimize
your programming effort.

Adding Classes and Packages

To add classes, either your own or third-party, put them in the class directory of your
Java Cartridge. A class directory is one of the directories in the CLASSPATH setting of
your Java Cartridge, set in its configuration section. CLASSPATH lists the directories
that the Java Cartridge searches for Java classes to invoke. The classes include those
that are invoked by the URL and those that are used by other classes. Since the physical
paths of the Java Cartridge are automatically added to the CLASSPATH, you may also
put the classes under the physical path directories.

If you have several classes, you may consider packing them up as a ZIP file. The ZIP
file must not be compressed. Add the full path of your ZIP file to CLASSPATH. For
example, if you pack your classes in a file called myclasses.zip under /usr/local/oracle/
java/classes directory, your CLASSPATH should contain:

CLASSPATH = ...:/usr/local/oracle/javal/classes/myclasses.zip:...

Packing classes as a ZIP file gives you slightly better performance because the Java
Cartridge can load all classes together from the file system. In fact, Oracle’s Java
packages are bundled in the ZIP file oracle.zip. Be aware that including files that are
not needed can slow down class invocation.

Note that if your classes belong to packages, you must create the sub-directories that
correspond to those packages. For example, if your class belongs to a.b.c package,
the class file must be under sub-directory a/b/c under the class directory.

Adding Classes with Native Libraries

To add classes or packages with native libraries, the native libraries should be put in
one of the directories listed in the LD_LIBRARY_PATHconfiguration setting of the Java
Cartridge in its configuration section. For example, if you put your native libraries

Using the Java Cartridge 2-33 Using Oracle Web Application Server™ Cartridges

under the /usr/local/oracle/java/lib directory, your LD_LIBRARY_PATHshould
contain:

LD_LIBRARY_PATH = ...:/usr/local/oracle/java/lib:...

Your classes should be added as shown in the previous section.

Troubleshooting and Debugging

Web Request Broker

The Java Cartridge

Using the Java Cartridge

< Web Request Broker

e TheJava Cartridge

= Java Web Applications

= NoJava Debugger

= Shutting Down the Java VM
= Logging Information

= Exception Handling

When your Java Web application cannot be invoked properly, first make sure that the
Web Listener and the WRB are started and functioning properly. Also, make sure that
the Java Cartridge is registered with the WRB and the virtual path for your application
maps to the Java Cartridge.

The Java Cartridge requires two minimum configuration settings, CLASSPATH and
LD_LIBRARY_PATH.

CLASSPATH must contain:

* 9%ORAWEB HOME%/java/classes.zip - the JavaSoft JDK class library
* %ORAWEB HOME%/java/oracle.zip - the Java Web Toolkit

e 9%ORAWEB HOME%/java - the directory for storing your Java class files. This
is the default directory, you can change this directory if you like.

LD_LIBRARY_PATH must contain:

« %ORAWEB HOME%/java/lib - the JDK native libraries
 %ORAWEB_HOME/lib - the Java Web Toolkit native libraries

If the Java Cartridge is configured, you should be able to invoke the HelloWorld
sample by the URL http://<host>.<domain>:<port>/sample/Java/run/
HelloWorld

Make sure that your Java application’s classes are stored under one of the directories
in CLASSPATH or the physical paths of the Java Cartridge. If your classes use native
libraries, make sure that they are stored under one of the directories in
LD_LIBRARY_PATH.

2-34 Using Oracle Web Application Server™ Cartridges

Java Web Applications

No Java Debugger

Make sure that the main entry-point method has the correct prototype: public, static,
no return type; and that main takes an array of strings as its only argument.

When an error occurs in your Java application, an exception is thrown. If you do not
catch the exception and handle it by surrounding your statements with a try-catch
block, the Java Cartridge will report the uncaught exception. If your Java classes are
compiled with the debug flag, the cartridge will also report the source where the
exception originates. In some situations, an error may be thrown instead, and an error
cannot be caught by a try-catch block.

There are many common exceptions and errors, such as:

< NullPointerException - a method or a data member is accessed with a null object
reference. Check your program logic and fix the error.

« ClassNotFoundException - access to a class that cannot be found. Make sure
that the class is under one of the directories in CLASSPATH or the physical paths
of the Java Cartridge.

= NoSuchFieldError, NoSuchMethodError - access to a field or a method that
cannot be found in the class. This may be caused by a change in a class that other
classes use and they are not updated. Update all those classes that use it.

= UnsatisfiedLinkedError - fail to load a native library. This is usually caused by
a missing native library, or an unresolved symbol in the library. Make sure that
the native library is in one of the directories in LD_LIBRARY_PATH and all
referenced symbols are defined.

Since the Java Cartridge does not include a debug environment to develop your Java
Web Application, you should use your JDK or Java IDE to write and debug your
application in the same way as you do for your other Java applications.

When you debug your applications in these tools, some of the functionalities in the
Java Web Toolkit are disabled because your Web Application is not executed in the
WRB environment. Therefore, you should write and debug as much of your
application which does not use the Java Web Toolkit with JDK or Java IDE. In some
situations, you may need to insert dummy code in your application to substitute your
Java Web Toolkit calls so that your application will function as if it is running in the
Java Cartridge.

Once your complete the non-Java Web Toolkit portions of your application, put in
your Java Web Toolkit calls and compile your application. To compile your application
in your JDK or Java IDE with Java Web Toolkit, you need to include the Toolkit’s
library in your environment. Specifically, you need to include the Toolkit’s class
library, namely the library ZIP file SORAWEB_HOME/java/oracle.zip, to the
CLASSPATH setting, and the directory which contains the supplementary native
libraries, namely SORAWEB_HOME/lib, to your native library path

Shutting Down the Java VM

Using the Java Cartridge

Once aJava Web Application is invoked, the classes that implement the application are
cached by the Java Cartridge. This is done to speed up the performance of the
application so that Java Cartridge does not have to reload the classes in subsequent

2-35 Using Oracle Web Application Server™ Cartridges

Logging Information

Exception Handling

Using the Java Cartridge

invocations. If you modify your Java Application, you need to restart the Java
Cartridge to reload the classes. Furthermore, reloading the Java Cartridge does not
cause the cartridge to reload the classes.

The WRB provides the Logger Service for cartridges to write error, warning, or other
useful messages to a central log repository (a file system or a database). Web listener

and WRB messages will also be logged in the same repository. The Web Application

Server suite includes a Log Analyzer tool that can be used to analyze the log messages
and generate reports for auditing, performance-tuning, or other purposes.

The Java Web Toolkit provides an OutputLogStream class in the
oracle.owas.wrb.services.logger package for your Java applications to write
log messages with the Logger Service. To write a log message, instantiate an
OutputLogStream object, specify the component name and the log destination, and
use the print or printin ~ methods to write a message.

You may include the severity level of the message. The Logger Service defines the
semantics of each severity level. It is a good idea to follow its semantics when you write
your log messages so that the Log Analyzer can produce consistent analysis of the log.
See the WRB Logger APIs section for a description of the severity levels.

Here are examples that illustrate how to log messages with OutputLogStream

/I Instantiates an OutputLogStream
OutputLogStream log = new OutputLogStream("my component”);

// Log an error message of severity 1
log.printin(1, "An error occured");

When a Java class encounters an error, the Java Cartridge throws an exception. Catch
the exception by surrounding your statements with a try-catch block and print the
error message. When you are building and debugging the application, you may want
to print the error message to the system’s standard error stream. For example:

try{

} catch(Exception e) {
System.err.printin("Exception: " + e.getMessage());

}

After you have debugged the application, you may want to change the destination of
the error message to go to the client. The above code then becomes:

HTMLStream out = HTMLStream.theStream();
try{

} catch(Exception e) {
out.printin("An error occurred in this class: " + e.getMessage());

}

2-36 Using Oracle Web Application Server™ Cartridges

Examples
This section contains an expanded “HelloWorld” example. The example illustrates:

= Oracle’s HTML-generation package
= Access to HTTP request information

= Database access through PL/SQL stored procedures
The example defines the following methods:

e main() -the main entry method

« initialize() - initializes the environment before serving a request

= saveClientinfo() - stores client information into a database

= retrieveClientinfo() - retrieves client information from a database

e getHTTPInfo() - retrieves User-Agent and client’s host name information

from an HTTP request
e printHTML() - constructs and returns results in HTML back to the client

= generateBrowserReport() - formats the database-query results in HTML
table format, illustrates the use of DynamicTable to generate an HTML table
main()
This is the main entry function to HelloWorldX:

import oracle.html.*;

import oracle.rdbms.*;

import oracle.plsql.*;

import oracle.owas.wrb.services.http.*;
import java.util.*;

class HellowWorldX {
public static void main(String argsl]) {

/* Initializes environment */
initialize();

/* Retrieve User-Agent and client's host name information from the
* HTTP request. */
getHTTPInfo();

/* Stores client information into a database */
saveClientinfo();

/* Retrieves client information from a database */
retrieveClientInfo();

/* Constructs and returns results in HTML back to the client */
printHTML();

Using the Java Cartridge 2-37 Using Oracle Web Application Server™ Cartridges

initialize()
This method initializes the environment before serving a request.

private static void initialize()

{

/* Creates a new HTML item to store any error message. */
errorMesg = new Compoundltem();

}

saveClientinfo()
This method stores client information into a database. It illustrates the invocation of

PL/SQL stored procedures in Java to store data into a database.

private static void saveClientInfo()

{
/* Defines Oracle Session ORACLE_HOME property. ORACLE_HOME value

* can be retrieved from Java's system properties if this class is

* executed in the Java Cartridge.

*/

Session.setProperty("ORACLE_HOME",
System.getProperty("oracleHome"));

try {

/* Creates a new database session and passes username, password
* and connect-string to logon.

*/
dbSession = new Session("rpang", "rpang", "wdk7322");

/* Prepares PL/SQL Browser_Stat package for access. BrowserStat
*is a Java class-wrapper for the PL/SQL package "browser_stat".

*/

browserStat = new BrowserStat(dbSession);

/* Creates parameters to invoke a PL/SQL stored procedure. For
* each type of PL/SQL data type, there is a corresponding Java

class-
* wrapper. To invoke a PL/SQL stored procedure, we need to

construct
* the parameters which we will pass to a PL/SQL stored procedure.

*
PStringBuffer pBrowser = new PStringBuffer(userAgent);
PStringBuffer pVisitHost = new PStringBuffer(remoteHost);

PDate pVisitDate = new PDate(new Date());

/* Invokes "browser_stat.update_browser" PL/SQL stored procedure.
* This is done by invoking the corresponding method in the
* corresponding Java class-wrapper.

*/
browserStat.update_browser(pBrowser, pVisitHost, pVisitDate);

/* Commit changes to browser statistics in the database */
dbSession.commit();

Using the Java Cartridge 2-38 Using Oracle Web Application Server™ Cartridges

retrieveClientinfo()

Using the Java Cartridge

} catch (ServerException e) {

/* All database operation may throw ServerException when a
* database exception occurs. This exception should be caught and
* properly handled.
*/
errorMesg.addltem(new Simpleltem("Database error while storing
browser information to database: " + e.getMessage()));

}
}

This method retrieves client information from a database. It illustrates the invocation
of PL/SQL stored procedures in Java to access data in a database.

private static void retrieveClientInfo()

{

try {

/* Invokes "browser_stat.count_browsers" PL/SQL stored procedure.
* This is done by invoking the corresponding method in the
* corresponding Java class-wrapper.
*/
PDouble pCount = browserStat.count_browsers();

/* Retrieves value from a PL/SQL value. Notice that all value-
* retrieval methods of PL/SQL data-type wrappers will throw
* NullValueException if the PL/SQL value is null.

*/

int count = pCount.intValue();

browsers = new String[count];
visitCounts = new int[count];
visitHosts = new String[count];
visitDates = new Date[count];

if (count > 0)

{
[* Creates parameters to invoke PL/SQL stored procedure */
PStringBuffer pBrowsers[] = new PStringBuffer[count];
PDouble pVisitCounts[] = new PDouble[count];
PStringBuffer pVisitHosts[] = new PStringBuffer[count];
PDate pVisitDates[] = new PDate[count];
PDouble pMax = new PDouble(count);

for(inti = 0; i < pBrowsers.length; i++)
{
[* For array data-types, we need to create each array element. */
pBrowsers[i] = new PStringBuffer(80);
pVisitCounts[i] = new PDouble();
pVisitHosts[i] = new PStringBuffer(80);
pVisitDates[i] = new PDate();

2-39 Using Oracle Web Application Server™ Cartridges

getHTTPInfo()

Using the Java Cartridge

/* Invokes "browser_stat.get_browser_stat" PL/SQL stored procedure.
* This is done by invoking the corresponding method in the
* corresponding Java class-wrapper.
*/
pCount = browserStat.get_browser_stat(pBrowsers,
pVisitCounts,
pVisitHosts,
pVisitDates,
pMax);

count = pCount.intValue();

for(inti = 0; i < count; i++)
{
/* Retrieves the PL/SQL values and store them in Java variables. */
browsers[i] = pBrowsers]i].stringValue();
visitCounts[i] = pVisitCounts][i].intValue();
visitHosts[i] = pVisitHosts[i].stringValue();
visitDates[i] = pVisitDates[i].dateValue();

}
} catch (ServerException e) {

/* All database operation may throw ServerException when a
* database exception occurs. This exception should be caught and
* properly handled.
*/
errorMesg.addltem(new Simpleltem("Database error while retrieving
browser statistics from database: " + e.getMessage()));

} finally {

/*No matter we have error or not, we should disconnect the database
* session.
*/
try {
dbSession.logoff();
} catch (ServerException e) {
/* We will ignore any database error when we logoff from database. */
}
}
}

This method retrieves User-Agent and client’s host name information from the HTTP
request. It illustrates how to retrieve information from an HTTP request.

public static void getHTTPInfo()
{

/* Retrieves the HTTP request. getRequest returns the current
request. */
HTTP request = HTTP.getRequest();

/* Retrieves User-Agent information from the current request. */
userAgent = request.getHeader("User-Agent");

2-40 Using Oracle Web Application Server™ Cartridges

/* Retrieves client's host name from the current request. */
remoteHost = request.getCGIEnvironment("REMOTE_HOST");

}

printHTML()
This method constructs and returns results in HTML back to the client.

private static void printHTML()

{
/* Constructs the HTML page. An HTML page consists of a head and

* a body.

*

HtmIHead hd = new HtmIHead();
HtmIBody bd = new HtmIBody();
HtmlPage pg = new HtmIPage(hd, bd);

/* Puts results in the page body. The basic building-block of an
* HTML page is an HTML item (class Item), which can be added to
*an HTML page body. Simpleltem is a basic Item.
*
bd.addltem(new Simpleltem("Hello, user at "))
.addltem(new Simpleltem(remoteHost).setltal()) // Sets IP addr
italic
.addltem(new Simpleltem(":"))
.addltem(Simpleltem.Paragraph)
.addltem(Simpleltem.Paragraph);

/* Group together a set of HTML items so that they can be treated as
* a single item.
*/
Compoundltem infoBody = new CompoundIitem();
infoBody.addltem(new Simpleltem("l found that you are using "))
.addltem(new Simpleltem(userAgent).setBold()) // Sets userAgent

bold
.addltem(new Simpleltem(" browser. How do you like it?"))

.addltem(Simpleltem.Paragraph)

.addltem(new Simpleltem("l am conducting a poll to decide which " +
"browser is the most popular, and your " +
"browser information has been saved."))
.addltem(Simpleltem.Paragraph);

/* Use HTML definition list to indent paragraphs. */
DefinitionList clientinfo = new DefinitionList();
Simpleltem emptyCell = new Simpleltem();
clientinfo.addDef(emptyCell, infoBody)
.addDef(emptyCell, generateBrowserReport());

bd.addItem(clientinfo);

/* Include error message in the bottom if there is any. */
if (errorMesg.size() > 0)
{
bd.addltem(Simpleltem.Paragraph)
.addltem(new Simpleltem("Error: "))
.addltem(errorMesg);

Using the Java Cartridge 2-41 Using Oracle Web Application Server™ Cartridges

}

/* Returns the HTTP header of the HTML page. */
pg.printHeader();

/* Returns the HTML page to the client. */
pg.print();

generateBrowserReport()

Using the Java Cartridge

This method formats the database-query results in HTML table format. It illustrates the
use of DynamicTable to generate an HTML table. The result is returned as an HTML
Item.

private static Iltem generateBrowserReport()

{

CompoundItem report = new Compoundltem();

report.additem(new Simpleltem("Here is the result of the poll as of
"
new Date() + ":"))
.addItem(Simpleltem.Paragraph);

/* Constructs a HTML table. An HTML table is represented as a
* DynamicTable.

*/

DynamicTable tab = new DynamicTable(2);

/* Added the table headers. */

TableRow row = new TableRow();

row.addCell(new TableHeaderCell("Browsers"))
.addCell(new TableHeaderCell("Visit counts"))
.addCell(new TableHeaderCell("Last visit hosts"))
.addCell(new TableHeaderCell("Last visit time"));

tab.addRow(row);

/* Added each browser as a row to the HTML table */
for (inti=0; i < browsers.length; i++) {
row = new TableRow();
row.addCell(new TableDataCell(browsersi]))
.addCell(new TableDataCell(Integer.toString(visitCountsi])))
.addCell(new TableDataCell(visitHosts[i]))
.addCell(new TableDataCell(visitDates[i].toString()));
tab.addRow(row);

}

report.addltem(tab);

return report;

}

[* User agent (brower) information */
private static String userAgent;

/* Client's host name */

2-42 Using Oracle Web Application Server™ Cartridges

PL/SQL Tables

Using the Java Cartridge

private static String remoteHost;

I* Known browsers */
private static String browsers|[];

[* Times they visited */
private static int visitCounts[];

[* Last visit host names */
private static String visitHosts[];

[* Last visit time */
private static Date visitDates[];

/* Database session */
private static Session dbSession;

/* PL/ISQL Browser_Stat package wrapper class */
private static BrowserStat browserStat;

/* HTML item to store error messages */
private static Compoundltem errorMesg;

The following PL/SQL table and package are used by the HelloWorldX Java example.

CREATE TABLE browser_stat_table

(
browser_name VARCHAR2(80) NOT NULL,
browser_visitcount NUMBER(10) NOT NULL,
browser_visithost VARCHAR2(80) NOT NULL,
browser_visittimeDATE NOT NULL,

CONSTRAINT ung_browser_name UNIQUE(browser_name)
)i

CREATE OR REPLACE PACKAGE browser_stat AS

type string_table is table of varchar2(80) index by binary_integer;
type number_table is table of number(10) index by binary_integer;
type date_table is table of date index by binary_integer;

procedure update_browser (
v_browser_name in varchar2,
v_browser_visithost in varchar2,
v_browser_visittime in date

);
function count_browsers return number;
function get_browser_stat (

v_browser_name out string_table,
v_browser_visitcount out number_table,

2-43 Using Oracle Web Application Server™ Cartridges

v_browser_visithost out string_table,
v_browser_visittime out date_table,
V_max in number

) return number;

END;

Using the Java Cartridge 2-44 Using Oracle Web Application Server™ Cartridges

CHAPTER

Using the LiveHTML
Cartridge

This chapter describes how to use the LiveHTML Cartridge, Oracle Web Application
Server’s implementation of Server Side Includes. The following topics are covered:
= Overview
* LiveHTML File Structure
« Limiting Use of LiveHTML (“Crippled” Includes)
= Database Access via LiveHTML
< LiveHTML and Intercartridge Exchange Service
* LiveHTML Commands
- config
- include
- echo
- fsize
- flastmod
- exec
- request
e LiveHTML Examples

Overview

The LiveHTML Cartridge is Oracle's implementation and extension of the standard
Server Side Includes (SSI) functionality defined by the National Center for
Supercomputing Applications (NCSA). The cartridge enables you to include dynamic
content in otherwise static Web pages. At the point in your Web page where you want
to interject dynamic content, you place a command that points to one of the following:

= A static Web page.
= Another LiveHTML Web page.

= Ascript that is executed on the server and outputs HTML. This script may but
need not be CGlI.

= Asystem variable, for example, FMODDATE.
 AURL.

Before returning a LiveHTML request, the LiveHTML Cartridge processes the above
commands and inserts the results in the returned HTML data.

LiveHTML File Structure

A Web page that uses LiveHTML must be parsed by the Web Application Server. For
this reason, it differs slightly from ordinary Web pages written in HTML, which the
Web Application Server simply delivers to the browser. To have the LiveHTML
commands executed on the server, you use the Web Application Server Manager to
specify that a given Web Listener is to parse files for LiveHTML. You have the option
of having the Listener parse all files or just those with certain extensions.

Configure the Web Application Server to direct requests to the LiveHTML Cartridge
by virtual paths or by extension. Any extension is valid including html.

For performance reasons, do not parse large binary files through the LiveHTML
Cartridge. That is, specify a virtual path to large binary files at the Listener level which
is different from the virtual paths specified at the LiveHTML Cartridge level. The
virtual paths can target the same physical paths.

The Web Application Server administrator normally creates file extensions for this
type, and these are what you use in your application code. The default file extension is
SHTML. The administrator can also specify HTML as a file extension, in which case all
HTML files are parsed for LiveHTML. Unless all your HTML files actually use
LiveHTML, this is a bad idea, as it degrades performance.

Limiting Use of LiveHTML (“Crippled” Includes)

Enabling users to execute scripts on the server can create security problems and other
risks. For this reason, you can specify, as part of the server configuration, the Cartridge
allows only “crippled” includes. This means that LiveHTML can retrieve static HTML
environment variables only, or other server parsable files, not executable scripts.

Database Access via LiveHTML

You can use LiveHTML to run the PL/SQL Agent via InterCartridge Exchange (ICX),
and thereby incorporate dynamic Oracle data in hardcoded Web pages. You can also
use ODBC.

LiveHTML and Intercartridge Exchange Service

The Intercartridge Exchange Service (ICX) feature of the Web Application Server
allows cartridges to communicate with each other by making HTTP requests.
Cartridges can communicate to retrieve documents from another cartridge or to

Using the LiveHTML Cartridge 3-2 Oracle Web Application Server Cartridge User’s Guide

perform some computations on another cartridges. For more information about ICX,
see the Introduction to the Web Request Broker.

From your LiveHTML document, you can issue ICX requests. For example, you can
invoke the PL/SQL Cartridge from the LiveHTML document, and the results from the
PL/SQL Cartridge would be included in the LiveHTML document.

LiveHTML Commands

Command Format

LiveHTML commands are formatted as HTML comments, so that they are not seen by
the user if the server fails to execute the commands for any reason. LiveHTML
commands have the following format:

<I--# command[argl =" valuel " ..]-->

command is the name of the LiveHTML command, argl is the name of the parameter to
pass to the command, and valuel is the value for the parameter.

Note: Only one LiveHTML command can be present per line. For example:

http://<!--#echo var="SERVER_NAME" -->
<l--#echo var="DOCUMENT_URI" -->

must be broken into two separate lines.

Also, for NT, each line in your LiveHTML files cannot exceed 268 characters.

LiveHTML Commands

The following table summarizes the LiveHTML commands:

Command Description

config This command sets parameters for how the included files or
scripts are to be parsed. It is normally the first LiveHTML
command in afile.

include This command specifies that a file is to be included in the
generated HTML page at this point.

echo This command gives the value of an environment variable.

fsize This command produces the size of the file.

flastmod This command produces the last modification date of the file.

exec This command executes a script.

request This command allows you to include the results of another

HTTP request including, but not limited by, calling another
cartridge via ICX.

Using the LiveHTML Cartridge 3-3 Oracle Web Application Server Cartridge User’s Guide

config

This command sets parameters for how a file or script is to be parsed. It is normally the
first LiveHTML command in a file. The possible arguments are:

Argument

Description

errmsg

Specifies the error message that is sent to the client if an error
occurs while parsing the document.

timefmt

Specifies the format to use when displaying dates. The
conventions follow the strftime library call.

Ordinary characters in the format are copied to the document
without conversion, so you can insert “on” or “at” or other
useful strings.

sizefmt

Specifies the format to use when displaying file size. Possible
values are:

= hytes -the file size is given in bytes
= abbrev - the file size is given in kilobytes or megabytes

cmdecho

Specifies whether non-CGl scripts subsequently executed have
their output incorporated into this HTML page. The possible
values are ONand OFF ONspecifies that the output is included.
The default is OFF.

cmdprefix

Specifies a string to prepend to each line of the script output.

cmdpostfix

Specifies a string to append to each line of the script output.

For example:

<l--#config errmsg="A parse error occurred in the music_lookup file"-->

include

This command specifies that afile is to be included in the generated HTML page at this
point. The file can be any of the following:

e another LiveHTML file

= aregular HTML file

e an ASCII file

The Web Application Server determines the type of the included file by its extension.

The command can take the following arguments:

Argument

Description

virtual

This gives a virtual path to the file. The directory mappings for
virtual paths are set by the Web Application Server
administrator using Web Application Server Manager.

file

This gives a pathname relative to the current directory.
References to parent directories or uses of absolute pathnames
are forbidden.

Using the LiveHTML Cartridge

3-4 Oracle Web Application Server Cartridge User’s Guide

For example, if your file contains the following include command:
<l--#include file="inc.html"-->
and the inc.html file contains:

<p>Date/Time Formats |
Doc Names/Paths |
File Size/Date <p>

this would result in the following links being inserted into your Web page:

Date/Time Formats | Doc Names/Paths | FileSize/Date

echo
This command gives the value of a standard CGI environment variable or a Server Side
Includes environment variable.
This command requires the var argument, which specifies the name of the variable.
The Server Side Includes environment variables are:

Variable Description

DOCUMENT_NAME The current filename.

DOCUMENT_URL The virtual path to this file.

QUERY_STRING_UNESCAPED | If the client sent a query string, this is an
unescaped version of it, with all shell-special
characters escaped with \.

DATE_LOCAL The current date and local time zone, given in
the format specified in the most recent config
timefmt command.

DATE_GMT The current date and time zone in Greenwich
Mean Time, given in the format specified in the
most recent config timefmt command.

LAST_MODIFIED The last modification date of the file, given in
the format specified in the most recent config
timefmt command.

fsize
This command produces the size of the file in the format specified in the most recent
config filesize command. Valid arguments are the same as for the include command.
flastmod

This command produces the last modification date of the file in the format specified in
the most recent config timefmt command. Valid arguments are the same as for the
include command.

Using the LiveHTML Cartridge 3-5 Oracle Web Application Server Cartridge User’s Guide

exec

request

This command causes execution of a script. The argument specifies whether or not the
script is CGl.

Argument Description

cmd Specifies a non-CGl script. Execution is passed to the operating
system, and the given string is parsed as though it were entered
at acommand-line interface. The full path of the script must be
given.

The non-CGI environment variables specified under echo
above can be referenced. For the output of the script to be
included in the HTML page, you have to set the following line
in the page:

<!--#config cmdecho="ON"-->

cgi Specifies a CGl script. The value is the virtual path of the CGI
script. URL locations are automatically converted into HTML
anchors.

Note: Before you can use the exec command, you need to enable it in the LiveHTML

Cartridge configuration.

This command allows you to include resources specified in an extended URL.
<!--#request URL= <UR[>
For example:

<l--#request URL="http://whatever/hr/$user/
work?SQLString="select$property from employee’'&name=$user”>

The command requires the URLargument, which identifies the extended URL format.
This format relieves you from encoding the URL and allows you to use variable
substitution.

You embed a request command in an HTML document. This document itself can also
take a query string. Only the form style query string is relevant and usually refers to
name-value pairs. The names in the name-value pairs of the query string (consisting of
alphanumeric characters and beginning with an alphabetic character) are defined as
the ARGS of this document.

The syntax of the HTTP URL is the following:

http://user:password@host:port/url-path?QS

= url-path extends the semantics of the common URL because variables are subject
to substitution. The representation of the variable substitution is $ARG. The
variable must be in between '/’ or between '/’ and the end of the <url-path> is
recognized as a variable substitution. A variable must be one of the ARGS for
this document.

e QS represents the query string.

Using the LiveHTML Cartridge 3-6 Oracle Web Application Server Cartridge User’s Guide

= LiveHTML expects content within single quotes to be a non-encoded URL since
Server Side Includes performs the encoding. However, you must correctly
encode the rest of the HTTP URL.

= LiveHTML ICX support contains some characters that have a special
meaning for PString: ’$’, ””’, "\ is the escape character. You need to escape
these characters to preserve their literal meaning.

= Note that the request URL might point to a complete HTML document.
However, LiveHTML ICX support includes only the content inside the
<BODY> and strips any other tags such as <HTML> or <HEAD>.

For an example of LiveHTML ICX support, see LiveHTML Examples.

LiveHTML Examples

This section provides examples of LiveHTML commands.

Displaying Date and Time

The following config command defines a date and time format, which is used by the
echo command.

<l--#config timefmt="%A, %B %d, %Y, at %l:%M %p"-->
<p>GMT date/time is

<l--#echo var="DATE_GMT"-->

<p>LOCAL date/time is

<l--#echo var="DATE_LOCAL"-->

<p>Updated on

<!--#echo var="LAST_MODIFIED"-->

This generates the following:

GMT date/time is Friday, August 23, 1996, at 03:14 AM
LOCAL date/time is Thursday, August 22, 1996, at 08:14 PM
Updated on Tuesday, August 13, 1996, at 03:42 AM

Getting Information About the Current File
The following lines:

This document is <!--#echo var="PATH_TRANSLATED"-->
Its virtual path is <!--#echo var="DOCUMENT_URI"-->

generate

This document is /privatel/oracle/ows21/sample/ssi/sstest.html
Its virtual path is /sample/ssi/sstest.html

Getting Information on Other Files

The fsize and flastmod commands allow you to get the file size and last modification
date of any file on the server rather than just the current document.

For example, the following lines:

Using the LiveHTML Cartridge 3-7 Oracle Web Application Server Cartridge User’s Guide

<l--#config sizefmt="bytes"-->
<p>This gives the file size of ‘sstest.html’ in bytes:
<l--#fsize file="sstest.html"-->

generate
This gives the file size of 'sstest.html' in bytes: 6405 bytes
The following lines:

<l--#config sizefmt="abbrev"-->
<p>This gives the file size of ‘sstest.html’ in bytes:
<l--#fsize file="sstest.html"-->

generate
This gives the file size of 'sstest.html' in kilobytes: 6 Kbytes

One of the best uses of fsize is to provide the user with the sizes of graphic files to be
downloaded. This is a tremendous timesaver if you add and change downloadable
images frequently, since you never have to look up the file sizes and enter them
manually.

Getting Information on the Client’s Browser

You can display to the user the browser and version that he or she is using to read your
pages.

The line:
<p>You are using <!--#echo var="HTTP_USER_AGENT"-->
generate
You are using Mozilla/2.01 (compatible) Oracle(tm) PowerBrowser(tm)/
1.0a
Providing Host and Server Information
The following lines:

Host: <!--#echo var="REMOTE_HOST"-->
(<!--#echo var="REMOTE_ADDR"-->) - Server:
<l--#echo var="SERVER_NAME"-->

(<!--#echo var="SERVER_SOFTWARE"->)

generate
Host: scuba.us.oracle.com (144.33.288.777) - Server:
spider.us.oracle.com (Oracle_Web_listener2.1/1.20in2)
Using LiveHTML to Send an ICX Request

Assume you want to compose a LiveHTML document, status.html, which takes two
parameters: a user name and a property of interest. Also, assume the following URL is
real:

status.html?user=foo+bar&property=job-+title

Then, you can include in the status.html document a command to retrieve this
information from some URL, which LiveHTML composes dynamically.

Using the LiveHTML Cartridge 3-8 Oracle Web Application Server Cartridge User’s Guide

<l--#request URL=http://whatever/hr/$user/work?SQLString="select
$property from employee’&name=$user">

LiveHTML expands the above request to the following:

http://whatever/hr/
fo0%20bar?SQLString=select+job%20title+from+employee
&name=foo+bar

The returned document (must have MIME type text/html) now replaces this line of the
status.html document with the appropriate information.

Using the LiveHTML Cartridge 3-9 Oracle Web Application Server Cartridge User’s Guide

Using the LiveHTML Cartridge 3-10 Oracle Web Application Server Cartridge User’s Guide

cuarrer [

Using the Perl Cartridge

Contents

Overview

Tutorial

Configuration

Invocation

Writing Perl Scripts for the Perl Cartridge
Developing Perl Extension Modules

Troubleshooting

Overview

Perl is an interpreted language that is commonly used to write CGI scripts. Perl has
powerful text processing capabilities, which makes it ideal for parsing requests from
clients and generating dynamic HTML. You can download Perl from many sites on
the Internet; you can find a list of pointers at http://www.perl.com.

The Perl Cartridge is essentially the Perl interpreter that has been modified to run
under the Web Request Broker. Although you can run Perl scripts under Web
Application Server without using the Perl Cartridge (that is, they are run as regular
CGl scripts), you can get better performance if you run the Perl scripts under the
Perl Cartridge. In addition, the Perl Cartridge has the Perl interpreter in it, so you do
not need to have it on your system.

Perl scripts written for the Perl Cartridge are slightly different from Perl scripts for a
CGI environment because of how the cartridge runs the interpreter. If you already
have Perl scripts on your system that you run in a CGI environment, you may need
to modify them to make them run correctly under the cartridge.

How the Perl Cartridge Improves Performance

Perl scripts run faster under the Perl Cartridge than under a regular CGI
environment. The cartridge achieves this by:

= Maintaining a persistent Perl interpreter

This avoids the overhead of allocating and constructing a new interpreter each
time the server receives a request to run a Perl CGI script. The interpreter is
loaded once in memory and it keeps running after handling each request.

= Compiling Perl scripts beforehand, so that the interpreter only has to run the
compiled script when a request is received

The Perl Cartridge caches the compiled script. If it receives subsequent requests
for the same script, it does not recompile the script. Before using the cached
version of the script, the Perl Cartridge checks whether it has been modified. If
it has, the cartridge removes the compiled script from the cache and compiles the
modified script and stores it in the cache.

Versions of Perl Supported

The Perl Cartridge supports Perl version 5.003.

4-2 Using the Perl Cartridge

Tutorial

This section provides a step-by-step guide on creating and invoking a simple Perl
script that displays the values of some standard CGI environment variables.

This tutorial steps you through the following tasks:
1. Writing the Perl Script

2. Adding a Virtual Path for the Perl Cartridge

3. Stopping and Restarting the Listener

4. Creating an HTML Page to Invoke the Perl Script

This tutorial assumes you can log in as the “admin” user for the Web Application
Server. This is required because you will be adding new settings to the configuration
of the server.

1. Writing the Perl Script

Type the following script into a file and save it as showEnv.pl. Place the file in the
%ORAWEB_HOME%\test directory. If you do not have permissions to create this
directory, you can put the file in another directory, but remember your directory
name when you are specifying the virtual path mapping.

print “Content-type: text/html\n\n”;

print “<htmI>\n";

print “<head>\n";

print “<titte>Some CGI environment variables</title>\n";
print “</head>\n";

print “<body bgcolor=white>\n";

print “<h1>Some CGI environment variables</h1>\n";

@varsToDisplay = (
‘HTTP_USER_AGENT’,
‘REQUEST_METHOD’,
‘PATH_INFO’,
‘PATH_TRANSLATED’);

print “<dI>\n";
while (@varsToDisplay) {
$envVar = shift @varsToDisplay;

print “<dt>$envVar\n”;
print “<dd>$ENV{$envVarj\n”;

print “</dI>\n";
print “</body></htmI>\n";

Using the Perl Cartridge 4-3

2. Adding a Virtual Path for the Perl Cartridge

You need to be the “admin” user to add the virtual path.

1.
2.

IR

8.

Run your browser and display the home page for the Web Application Server.

Click the Web Application Server Manager icon to display the Administration
home page.

Click Oracle Web Application Server to display the Administration page.
Click Cartridge Administration to display the Cartridge Administration page.
Click Perl Cartridge to display the Perl Cartridge Configuration page.

Click Web Request Broker Parameters for Perl to display the Update Cartridge
Configuration page.

In the Virtual Paths section, add a new virtual path. Name the virtual path ““/
perl/test” and the physical path “%ORAWEB_HOME%\test”.

Scroll to the bottom of the page and click Modify Cartridge.

You should see a success message. The Virtual Paths section should display the new
virtual path.

3. Stopping and Restarting the Listener

After reconfiguring the Web Application Server, you have to stop and restart the
Listener for the new configuration to take effect.

1.

Click the Listener button on the bottom of the page to go to the Oracle Web
Listener Administration page.

Click Stop to stop the Listener process.

Click Start to restart the Listener process.

4. Creating an HTML Page to Invoke the Perl Script

To run the current_users procedure, type in the following URL in your browser;

http:// your_machine_name [perlitest/showEnv.pl

It is more common, however, to invoke the procedure from an HTML page. For
example, the following HTML page has a link that calls the URL.

<HTML>

<HEAD>

<titte>CGI Environment Variables</title>

</HEAD>

<BODY>

<H1>CGI Environment Variables</H1>

<p><a href="http://hal.us.oracle.com:9999/perl/test/

showEnv.pl">Show CGI environment variables

</BODY>
</HTML>

4-4 Using the Perl Cartridge

The following figures show the source page (the page containing the link that

invokes the

showEnv.pl script), and the page that is generated by the script.

Figure 4-1: The source page and the dynamically generated page in the tutorial

J"'LI

Netscape: Some CGI Environment Yariables

File Edit V¥iew Go Bookmarkz Oplionz Directory |

Banl:l Fnrwardl ?‘Emel Helnaﬂl Laad Emg%l ﬂ

Location: Ifile :fpriwvatehone flkhooellfsh

CGI environment variables

Bhow CG] environment vanables

Er |

Figure 4-2: The page generated by the Perl script

B Netscape: Some CGI environment variables

File Edit V¥iew Go Bookmarkz Oplionz Directory Window

Banl:l §*$rmr§§| ?‘Emel Helnaﬂl Laad Emg%l Open..

Location: ﬁ‘lttp :fflkhooell-sun. us. oracle. cor

Some CGI environment variables

HTTP USEE_AGENT
Mozilla/3 .01 (X11; I; BundE 5.5.1 sundu)
REQUEST METHOD
GET
PATH IMFC
fshowEny pl
PATH TRAMSLATED
‘privatelapploracle/product? 3 2fowsi3 Oftest!showEny pl

sl | = (|

Using the Perl Cartridge

45

Configuration

Virtual Paths

To configure the Perl Cartridge, you use the Web Application Server Manager,
which is a collection of HTML forms. On these forms you enter information such as
virtual paths for the Perl Cartridge, the minimum and maximum number of
instances of the cartridge, and protection for the virtual paths.

To display the Perl Cartridge Configuration page:

1. Runyour browser and display the home page for the Web Application Server.

2. Click the Web Application Server Manager icon to display the Administration
home page.

3. Click Oracle Web Application Server to display the Administration page.
4. Click Cartridge Administration to display the Cartridge Administration page.

5. Click Perl Cartridge to display the Perl Cartridge Configuration page, which
contains links to pages that let you configure the cartridge.

- Web Request Broker Parameters for the Perl Cartridge displays the
Update Cartridge Configuration page.

- Logger
- Transaction
- Perl Cartridge-specific parameters

The following table shows the default virtual paths for the Perl Cartridge:

Table 4-1: Default virtual paths for the Perl Cartridge

Virtual Path Physical Path
/sample/perl %ORAWEB_HOME%\sample\perl
/perl %ORAWEB_HOME%\perl

The /sample/perl virtual path is used by the Perl samples. You should not modify
these virtual path mappings.

To add a virtual path (you need to be the “admin” user to do this):

1. Display the Perl Cartridge Configuration page.

2. Click Web Request Broker Parameters For Perl to display the Update Cartridge
Configuration page.

3. Inthe Virtual Paths section, enter the name of the new virtual path and the
physical path to which it maps.

4. Scroll to the bottom of the page and click Modify Cartridge.

You should see a success message. You must stop and restart the Listener for the
new configuration to take effect.

4-6 Using the Perl Cartridge

Number of Perl Cartridge Instances

You can configure the minimum and maximum number of Perl Cartridge instances,
which handle requests from the Web Application Server. When the WRB receives
the first request for a Perl Cartridge, it starts up the minimum number of Perl
Cartridge instances. If the WRB receives a request for the cartridge and all the
running cartridge instances are busyi, it starts a new instance of the Perl Cartridge,
provided the number of running instances does not exceed the maximum value. The
default values are 0 and 30 for minimum and maximum.

Number of Requests Processed by a Cartridge Instance

The Perl Cartridge process grows for each Perl script execution. Some
AUTOLOADed subroutines can cause the Perl Cartridge’s symbol table to grow. To
limit the growth, enter “MaxRequests” as a new parameter on the Cartridge
Configuration page and set its value to a small number. MaxRequests specifies the
number of requests to which a cartridge instance can service before it terminates.

Logging

The Perl Cartridge uses the Logger Service to write information and error messages
to a file in the file system (the default) or to an Oracle database. The Logger
Administration page provides you with an option for choosing between these two
modes of logging.

To enable logging for the cartridge:

1. Go to the “Update Cartridge Configuration” page and check that LOGGERs
selected in the Services field.

2. Click “Go Back to Perl Cartridge Configuration Page” and click Logger on that
page to display the “Logger Configuration For Cartridge Perl” page.

3. On this page, enter the name of the log file.

Cartridge Configuration Parameters

The Perl Cartridge uses a set of configuration parameters to get information about
the path for Perl libraries and Perl modules. You can check these values, which are
set during installation, using the Perl Cartridge Configuration page.

Table 4-2: Configuration parameters for the Perl Cartridge

Variable Description

PRIVLIB The path for private libraries.
Default value: %ORAWEB_HOME%%\perl\lib

Files in the Distribution

In addition to distributing the Perl Cartridge, the Web Application Server also
distributes the Perl binaries, sources, and man pages. The binaries and man pages
are installed when you install the Web Application Server, but the Perl sources are

Using the Perl Cartridge 4-7

not installed. You can access the source files, which are in compressed form, from
the CD.

Table 4-3: Perl-related files in $ORAWEB_HOME

Directory Description
$ORAWEB_HOME/perl Supporting files
$ORAWEB_HOME/perl/lib Perl runtime libraries
$ORAWEB_HOME/perl/bin Perl binaries

Using %ORAWEB_HOME%\perl as Your Main Perl Installation

You can use the Perl distribution that is provided with the Web Application Server
as your main Perl installation and use it to run Perl scripts outside the context of the
Web Application Server (for example, you can use it to run Perl scripts from a shell).

To use the Perl executables:
1. Addthe %ORAWEB_HOME%\perl\bin to your search path.
In a DOS shell, type:
set path=%path%,;%ORAWEB_HOME%\perl\bin
2. Set the PERL5LIB environment variable.
In a DOS shell, type:
set PERL5LIB=%ORAWEB_HOME%\perl\lib

Invocation

To invoke a Perl script under the Perl Cartridge, the URL must be in the following
format:

http://host_and_domain_name[:port]/virtual_path/
script_name[?query_string]

where:

= host_and_domain_name specifies the domain and machine where the Web server
is running

= port specifies the port at which the Web server is listening. If omitted, port 80 is
assumed

= virtual_path specifies a virtual path mapped to the Perl Cartridge

= script_name specifies the file containing the Perl script. By convention, Perl
scripts have a “.pl” extension.

= query_string specifies parameters for the script
For example, if a browser sends the following URL:

http://www.acme.com:9000/perl/myScript.pl

4-8 Using the Perl Cartridge

the web server running on www.acme.com and listening at port 9000 would handle
the request. When the Listener receives the request, it passes the request to the WRB
because the /perl virtual directory is configured to call the Perl Cartridge. The Perl
Cartridge then executes myScript.pl.

Writing Perl Scripts for the Perl Cartridge

Variable Scoping

For Perl scripts to run correctly under the Perl Cartridge, they need to follow the
following rules. Note that you may need to modify existing CGI Perl scripts so that
they comply with these rules.

Be careful with namespace and variable scoping when running Perl scripts under
the Perl Cartridge. In conventional CGI scripts, you declare a variable and use it.
You do not have to worry about undefining the variable, because the script is
restarted for each request and is not reentrant.

In the case of the Perl Cartridge, global variables persist across multiple calls. The
value acquired by a variable at the end of one execution of the script is the initial
value for the variable when the script is executed next time. This might cause
inconsistent outputs, as seen in the following example:

1 print "Content-type: text/plain\n\n";

2 @question = (where, are, you, staying);
3 print "@question\n";

4 $"="\n";

5 @answer = (all, on, separate, lines);

6 print "@answer\n";

When run by the cartridge for the first time, it outputs;

where are you staying
all

on

separate

lines

When run the second time and thereafter, it outputs:

where
are

you
staying
all

on
separate
lines

This is because the script changes the value of the Perl special variable $" to “\n” at
line 4 and does not reset it to its original value before exiting the script. The Perl
Cartridge has a initial value of " " (blank) for the special variable.

Using the Perl Cartridge 4-9

One way of fixing the problem is to add this line to the end of the script to reset the
value of the variable:

$r=r

If the execution of your script depends on values of global variables, make sure that
these variables are reset to the original values.

To avoid the above problem:

= Limit the scope of your variable to the required extent only. Make sure that the
variables expire after their use (by scoping the variable with my()) or that the
script resets them to their original values.

= Reduce global variables and localize them where possible. When you need to
modify Perl’s global variables, localize them so that the modification affects the
local instance of the variable only. This causes the modified value of the variable
to be applicable only for that run of the script.

Another way to fix the example above is to localize the $" variable:

print "Content-type: text/plain\n\n";
@question = (where, are, you, staying);
print "@question\n";

local($");

$"="\n";

@answer = (all, on, separate, lines);

O O~ WON P

7 print "@answer\n";

Line 4 localizes the $" Perl special variable. When the script runs as a subroutine in a
package, the localized variable $" has life only for that run of the script.

Namespace Collisions

4-10

The Perl Cartridge caches compiled Perl scripts to speed up the response time. If not
properly handled, the caching of multiple Perl scripts can lead to namespace
collisions. To avoid this, the Perl Cartridge translates the Perl script file name into a
guaranteed-unique package name, and then compiles the code into the package
using eval . The script is now available to the Perl Cartridge in compiled form as a
subroutine in the unique package name. When a request for the script is received,
the cartridge translates the filename to the package name and runs the subroutine
handler.

Although the above mechanism avoids the namespace collisions, you need to
remember that the default package name for the script is no longer “main”. The
default package name for the script is something that is generated by the cartridge.

The following example shows how the different package name affects your Perl
scripts.

Perl comes with library files, which are Perl scripts that provide utility functions. For
example, bigint.pl provides Perl with arbitrary size integer mathematics
subroutines. This library defines many of the subroutines in the namespace of the
package “main”. Here is an example:

normalize string form of number. Strip leading zeros. Strip any
white space and add a sign, if missing.

Using the Perl Cartridge

Strings that are not numbers result the value ‘NaN'.
sub main’bnorm { #(num_str) return num_str
local($)= @_;
s/\s+//g; # strip white space
if (s/N([+-]?)0*(\d+)$/$1$2/) { # test if number
substr($_,$[,0) = '+ unless $1; # Add missing sign
s/N-0/+0/;
$_;

}else {
'NaN';

}

A conventional CGI Perl script can use this library as follows:

1 # namespace.pl

2 require "bigint.pl";

3 print "Content-type: text/plain\n\n";
4 $one = &bnorm(456);

5 print "one = $one\n";

Line 4 can call the bnorm subroutine without specifying the package name, because
the default package name for conventional scripts is “main” and the bnorm
subroutine is available in the “main” package’s namespace. But under the Perl
Cartridge, a script is compiled into a package whose name depends on the filename.
Any eval statement (note that require calls eval) is evaluated in this package’s
namespace. In the example, although bigint.pl is compiled and stored in the
package of your script, the subroutines are explicitly stored in the “main” package
by fully qualified subroutine name (for example, main’bnorm).

To run the example under the Perl Cartridge, you need to modify the script to call
bnorm as main’bnorm

1 # namespace.pl

2 require "bigint.pl";

3 print "Content-type: text/plain\n\n®;
4 $one = &main’bnorm(456);

5 print "one = $one\n";

You should not assume that the default package name is “main”. To see the name of
the package that you are in currently, you can invoke the Perl function caller() ,
which returns a list containing the package name as generated by the Perl Cartridge,
the file name, and the current line number.

No Need for the #! Line

Typically, the first line of Perl CGI scripts tells the system the location of the Perl
interpreter. The line begins with “#!” and looks something like:

#!/usr/bin/perl

Perl scripts that are executed under the Perl Cartridge do not need to have that line
because the cartridge uses its own built-in Perl interpreter.

Using the Perl Cartridge 4-11

System Resources

System resources acquired by your Perl script should be freed before the script exits;
otherwise, the persistent Perl interpreter in the Perl Cartridge will reach system
limits for the resources.

In conventional CGI Perl scripts, you can open a file and do file operations without
closing it before the script exits. It does not matter in this case because the resources
are returned when the Perl interpreter exits, but in the Perl Cartridge environment,
the file remains open even after the script execution is finished. You have to
explicitly close the file in your script.

Developing Perl Extension Modules

The Perl Cartridge installation comes with the Perl interpreter runtime environment.
Perl extension modules that you develop using this Perl interpreter runtime
environment can be accessed by the Perl Cartridge.

The Perl interpreter installation is in the %ORAWEB_HOME%\perl directory. The
%ORAWEB_HOME%\perl\bin directory contains the “perl” executable. You can
develop and install your extension modules under the
%ORAWEB_HOME%\perI\lib directory.

For this you need to set the following environment variables:

e Set your path variable to use the “perl” executable from the
%ORAWEB_HOME%\perl\bin directory.

e Set the PERL5LIB environment variable to:
%ORAWEB_HOME%\perl\lib

Troubleshooting

Problems with Invoking Your Perl Script

Log Files

If your Perl script cannot be invoked:

< Make sure that the Perl Cartridge is registered with the WRB, and the virtual
path for the directory containing your script maps to the Perl Cartridge.

= Make sure that the Web Listener and the WRB are functioning properly. For
example, check that you can invoke other Perl scripts and other cartridges. You
can try invoking the sample Perl scripts.

If you have enabled logging for the Perl Cartridge, error messages are logged to the
file you specified in the “Logger Configuration For Cartridge Perl” page.

In addition, the Perl Cartridge also writes any messages sent to stderr from within
the Perl scripts (for example, output from warn and die) to the log file.

4-12 Using the Perl Cartridge

Unhandled Errors

The Perl Cartridge runs your Perl scripts as subroutines that are eval ’ed. If an error
occurs in the script, eval returns the error to the Perl Cartridge, which writes the
error to the log file and sends an error message to the browser.

Using the Perl Cartridge 4-13

4-14 Using the Perl Cartridge

The htp and htf Packages

This chapter describes the functions, procedures, and data types in the htp and htf
(hypertext procedures and hypertext functions) packages in the PL/SQL Web Toolkit.
The contents of these packages generate HTML tags that you can use to create dynamic
web pages.

For every htp procedure that generates HTML tags, there is a corresponding htf
function with identical parameters. The difference is that the function passes its output
to its caller and is typically used for nesting within procedures or other functions.

Parameters that have default values are optional.

Note: To look up htf functions, see the entry for the corresponding HTP procedures. The
string listed under “Generates” is the return value of the function.

The following list provides pointers to locations where you can get more information:

= For information on the Web in general:
- http://www.boutell.com/faq
= Forinformation on HTML 3.2:
- http://www.w3.org/pub/WWW/MarkUp/Wilbur/features.html

Summary
HTML, HEAD, and BODY Tags
htp.htmIlOpen, htp.htmIClose - generate <HTML> and </HTML>

htp.headOpen, htp.headClose - generate <HEAD> and </HEAD>

htp.bodyOpen, htp.bodyClose - generate <BODY> and </BODY>

Comment Tag

htp.comment - generates <!-- and -->
Tags in the <HEAD> Area

htp.base - generates <BASE>

Applet Tags

List Tags

Form Tags

htp.linkRel - generates <LINK> with the REL attribute
htp.linkRev - generates <LINK> with the REV attribute
htp.title - generates <TITLE>

htp.meta - generates <META>

htp.script - generates <SCRIPT>

htp.style - generates <STYLE>

htp.isindex - generates <ISINDEX>

htp.appletopen, htp.appletclose - generate <APPLET> and </APPLET>
htp.param - generates <PARAM>

htp.olistOpen, htp.olistClose - generate and
htp.ulistOpen, htp.ulistClose - generate and

htp.dlistOpen, htp.dlistClose - generate <DL> and </DL>

htp.dlistTerm - generates <DT>

htp.dlistDef - generates <DD>

htp.dirlistOpen, htp.dirlistClose - generate <DIR> and </DIR>
htp.listHeader - generates <LH>

htp.listingOpen, htp.listingClose - generate <LISTING> and </LISTING>

htp.menulistOpen, htp.menulistClose - generate <MENU> and </MENU>

htp.listitem - generates <L 1>

htp.formOpen, htp.formClose - generate <FORM> and </FORM>

htp.formCheckbox - generates <INPUT TYPE="CHECKBOX”>

htp.formHidden - generates <INPUT TYPE="HIDDEN">

htp.formlmage - generates <INPUT TYPE="IMAGE”>

htp.formPassword - generates <INPUT TYPE="PASSWORD”>

htp.formRadio - generates <INPUT TYPE="RADIO”>

htp.formSelectOpen, htp.formSelectClose - generate <SELECT> and </SELECT>

htp.formSelectOption - generates <OPTION>

htp.formText - generates <INPUT TYPE="TEXT”>

htp.formTextarea, htp.formTextarea? - generate <TEXTAREA>

A-2 Using Oracle Web Application Server™ Cartridges

Table Tags

IMG, HR, and A Tags

htp.formTextareaOpen, htp.formTextareaOpen2, htp.formTextareaClose - generate
<TEXTAREA> and </TEXTAREA>

htp.formReset - generates <INPUT TYPE="RESET"”>
htp.formSubmit - generates <INPUT TYPE="SUBMIT”>

htp.tableOpen, htp.tableClose - generate <TABLE> and </TABLE>

htp.tableCaption - generates <CAPTION>

htp.tableRowOpen, htp.tableRowClose - generate <TR> and </TR>

htp.tableHeader - generates <TH>

htp.tableData - generates <TD>

htp.line, htp.hr - generate <HR>

htp.img, htp.img2 - generate

htp.anchor, htp.anchor2 - generates <A>

htp.mapOpen, htp.mapClose - generate <MAP> and </MAP>

Paragraph Formatting Tags

htp.header - generates heading tags (<H1> to <H6>)

htp.para, htp.paragraph - generate <P>

htp.print, htp.prn - generate any text that is passed in

htp.prints, htp.ps - generate any text that is passed in; special characters in HTML are
escaped

htp.preOpen, htp.preClose - generate <PRE> and </PRE>

htp.blockquoteOpen, htp.blockquoteClose - generate <BLOCKQUOTE> and
</BLOCKQUOTE>

htp.div - generates <DIV>

htp.nl, htp.br - generate

htp.nobr - generates <NOBR>

htp.wbr - generates <WBR>

htp.plaintext - generates <PLAINTEXT>

htp.address - generates <ADDRESS>

htp.mailto - generates <A> with the MAILTO attribute
htp.area - generates <AREA>

htp.bgsound - generates <BGSOUND>

A-3

Character Formatting Tags

htp.basefont - generates <BASEFONT>

htp.big - generates <BIG>

htp.bold - generates

htp.center - generates <CENTER> and </CENTER>

htp.centerOpen, htp.centerClose - generate <CENTER> and </CENTER>

htp.cite - generates <CITE>
htp.code - generates <CODE>
htp.dfn - generates <DFN>

htp.emphasis, htp.em - generate

htp.fontOpen, htp.fontClose - generate and
htp.italic - generates <I>
htp.keyboard, htp.kbd - generate <KBD> and </KBD>
htp.s - generates <S>
htp.sample - generates <SAMP>
htp.small - generates <SMALL>
htp.strike - generates <STRIKE>
htp.strong - generates
htp.sub - generates <SUB>
htp.sup - generates <SUP>
htp.teletype - generates <TT>
htp.underline - generates <U>
htp.variable - generates <VAR>
Frame Tags
htp.frame - generates <FRAME>

htp.framesetOpen, htp.framesetClose - generate <FRAMESET> and </FRAMESET>

htp.noframesOpen, htp.noframesClose - generate <NOFRAMES> and
</NOFRAMES>

A-4 Using Oracle Web Application Server™ Cartridges

htp.address

Syntax

Purpose

Parameters

Generates/Returns

htp.address (

cvalue in varchar2
cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.address (cvalue, cnowrap, cclear, cattributes) return varchar2;

Generates the <ADDRESS> and </ ADDRESS> tags, which specify the address, author
and signature of a document.

cvalue - the string that goes between the <ADDRESS> and </ADDRESS> tags

cnowrap - if the value for this parameter is not NULL, the NOWRAP attribute is
included in the tag

cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

<ADDRESS CLEAR=tclear " NOWRAP cattributes >cvalue </ADDRESS>

A-5

htp.anchor, htp.anchor2

Syntax

Purpose

Parameters

Generates

htp.anchor (

curl in varchar2
ctext in varchar2
chame in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.anchor (curl, ctext, cname, cattributes) return varchar2;

htp.anchor2 (

curl in varchar2

ctext in varchar2

chame in varchar2 DEFAULT NULL
ctarget in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.anchor2 (curl, ctext, cname, ctarget, cattributes) return
varchar2;

Generates the <A> and HTML tags, which specify the source or destination of a
hypertext link. This tag accepts several attributes, but either HREF or NAME is
required. HREF specifies to where to link. NAME allows this tag to be a target of a
hypertext link.

The difference between these subprograms is that htp.anchor2 provides a target and
therefore can be used for a frame.

curl - the value for the HREF attribute

ctext - the string that goes between the <A> and tags
cname - the value for the NAME attribute

ctarget - the value for the TARGET attribute

cattributes - other attributes to be included as-is in the tag

htp.anchor generates:

ctext

htp.anchor2 generates:

ctext

A-6 Using Oracle Web Application Server™ Cartridges

htp.appletopen, htp.appletclose

Syntax

Purpose

Parameters

Generates

Example

Note:

htp.appletopen(
ccode in varchar2
cheight in number
cwidth in number

cattributes in varchar2 DEFAULT NULL);

htf.appletopen(ccode, cheight, cwidth, cattributes) return varchar2;

htp.appletclose;

htf.appletclose return varchar2;

htp.appletopen generates the <APPLET> HTML tag, which begins the invocation of a
Java applet. You close the applet invocation with htp.appletclose, which generates the
</APPLET> HTML tag.

You can specify parameters to the Java applet using the htp.param procedure.

You have to use the cattributes parameter to specify the CODEBASE attribute because
the PL/SQL Cartridge does not know where to find the class files. The CODEBASE
attribute specifies the virtual path containing the class files.

ccode - the value for the CODE attribute, which specifies the name of the applet class
cheight - the value for the HEIGHT attribute
cwidth - the value for the WIDTH attribute

cattributes - other attributes to be included as-is in the tag

htp.appletopen generates:
<APPLET CODE=code HEIGHT=cheight WIDTH=cwidth >

htp.appletclose generates:

</APPLET>

htp.appletopen(‘testclass.class’, 100, 200, ‘CODEBASE="/ows-
applets™)

generates

<APPLET CODE="testclass.class” height=100 width=200 CODEBASE="/ows-
applets™>

A-7

htp.area

Syntax
htp.area(
ccoords in varchar2
cshape in varchar2 DEFAULT NULL
chref in varchar2 DEFAULT NULL
cnohref in varchar2 DEFAULT NULL

ctarget in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.area(ccoords, cshape, chref, cnohref, ctarget, cattributes)
return varchar2;

Purpose

Generates the <AREA> HTML tag, which defines a client-side image map. This tag
defines areas within the image and destinations for the areas.

Parameters
ccoords - the value for the COORDS attribute
cshape - the value for the SHAPE attribute
chref - the value for the HREF attribute

cnohref - if the value for this parameter is not NULL, the NOHREF attribute is added
to the tag

ctarget - the value for the TARGET attribute

cattributes - other attributes to be included as-is in the tag

Generates

<AREA COORDS="ccoords" SHAPE="cshape" HREF="chref" NOHREF
TARGET="ctarget" cattributes>

A-8 Using Oracle Web Application Server™ Cartridges

htp.base

Syntax

Purpose

Parameters

Generates

htp.base(
ctarget in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.base(ctarget, cattributes) return varchar2;

Generates the <BASE> HTML tag, which records the URL of the document.

ctarget - the value for the TARGET attribute, which establishes a window name to
which all links in this document are targeted

cattributes - other attributes to be included as-is in the tag

<BASE HREF="<current URL>" TARGET="ctarget" cattributes>

htp.basefont

Syntax

Purpose

Parameters

Generates

htp.basefont(nsize in integer);

htf.basefont(nsize) return varchar2;

Generates the <BASEFONT> HTML tag, which specifies the base font size for a web

page.

nsize - the value for the SIZE attribute

<BASEFONT SIZE="nsize">

Using Oracle Web Application Server™ Cartridges

htp.bgsound

Syntax

Purpose

Parameters

Generates

htp.bgsound(
csrc in varchar2
cloop in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.bgsound(csrc, cloop, cattributes) return varcharz;

Generates the <BGSOUND> HTML tag, which includes audio for a web page.
csrc - the value for the SRC attribute
cloop - the value for the LOOP attribute

cattributes - other attributes to be included as-is in the tag

<BGSOUND SRC="csrc" LOOP="cloop" cattributes>

A-11

htp.big

Syntax

Purpose

Parameters

Generates

htp.big(
ctext
cattributes

htf.big(ctext, cattributes) return varchar2;

in

in varchar2
varchar2

DEFAULT NULL);

Generates the <BIG> and </BIG> tags, which direct the browser to render the text in

a bigger font.

ctext - the text that goes between the tags

cattributes - other attributes to be included as-is in the tag

<BIG cattributes>

ctext </BIG>

Using Oracle Web Application Server™ Cartridges

htp.blockquoteOpen, htp.blockquoteClose

Syntax
htp.blockquoteOpen (
cnowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.blockquoteOpen (cnowrap, cclear, cattributes) return varchar2;
htp.blockquoteClose;
htf.blockquoteClose return varchar2;
Purpose
Generates the <BLOCKQUOTE> and </BLOCKQUOTE> tag, which mark a section of
quoted text.
Parameters
cnowrap - if the value for this parameter is not NULL, the NOWRAP attribute is added
to the tag
cclear - the value for the CLEAR attribute
cattributes - other attributes to be included as-is in the tag
Generates

htp.blockquoteOpen generates:

<BLOCKQUOTE CLEAR=clear " NOWRAP cattributes >

htp.blockquoteClose generates:

</BLOCKQUOTE>

A-13

htp.bodyOpen, htp.bodyClose

Syntax

htp.bodyOpen(
cbackground in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.bodyOpen(cbackground, cattributes) return varchar2;

htp.bodyClose;

htf.bodyClose return varchar2;
Purpose

Generates the <BODY> and </BODY> tags, which mark the body section of an HTML
document.

Parameters

cbackground - the value for the BACKGROUND attribute, which specifies a graphic
file to use for the background of the document

cattributes - other attributes to be included as-is in the tag

Generates
htp.bodyOpen generates:

<BODY background="cbackground " cattributes >
htp.bodyClose generates:
</BODY>
Example
htp.bodyOpen(/img/background.gif’);
generates:

<BODY background="/img/background.gif">

A-14 Using Oracle Web Application Server™ Cartridges

htp.bold

Syntax
htp.bold (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.bold (ctext, cattributes) return varchar2;
Purpose
Generates the and tags, which direct the browser to display the text in
boldface.
Parameters
ctext - the text that goes between the tags
cattributes - other attributes to be included as-is in the tag
Generates

<B cattributes>ctext

A-15

htp.center

Syntax

Purpose

Parameters

Generates

htp.center(ctext in varchar?2);

htf.center(ctext in varchar2) return varchar2;

Generates the <CENTER> and </CENTER> tags, which center a section of text within

a web page.

ctext - the text to center

<CENTER>ctext</CENTER>

Using Oracle Web Application Server™ Cartridges

htp.centerOpen, htp.centerClose

Syntax
htp.centerOpen;
htf.centerOpen return varchar2;
htp.centerClose;
htf.centerClose return varchar2;
Purpose
Generates the <CENTER> and </CENTER> tags, which mark the section of text to
center.
Parameters
none
Generates

htp.centerOpen generates:

<CENTER>

htp.centerClose generates:

</CENTER>

A-17

htp.cite

Syntax

Purpose

Parameters

Generates

htp.cite (
ctext
cattributes

in

in varchar2
varchar2

DEFAULT NULL);

htf.cite (ctext, cattributes) return varchar2;

Generates the <CITE> and </CITE> tags, which direct the browser to render the text

as citation.

ctext - the text to render as citation

cattributes - other attributes to be included as-is in the tag

<CITE cattributes

>ctext </CITE>

Using Oracle Web Application Server™ Cartridges

htp.code

Syntax
htp.code (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.code (ctext, cattributes) return varchar2;
Purpose
Generates the <CODE> and </CODE> tags, which direct the browser to render the
text in monospace font.
Parameters
ctext - the text to render as code
cattributes - other attributes to be included as-is in the tag
Generates

<CODE cattributes >ctext </CODE>

A-19

htp.comment

Syntax

Purpose

Parameters

Generates

htp.comment (ctext in varchar2);

htf.comment (ctext in varchar2) return varchar2;

Generates the comment tags.

ctext - the comment

<l-- ctext -->

A-20 Using Oracle Web Application Server™ Cartridges

htp.dfn

Syntax
htp.dfn(ctext in varchar2);
htf.dfn(ctext in varchar2) return varchar2;
Purpose
Generates the <DFN> and </DFN> tags, which direct the browser to render the text
in italics
Parameters
ctext - the text to render in italics
Generates

<DFN>ctext</DFN>

A-21

htp.dirlistOpen, htp.dirlistClose

Syntax
htp.dirlistOpen;

htf.dirlistOpen return varchar2;

htp.dirlistClose;

htf.dirlistClose return varchar2;
Purpose

Generates the <DIR> and </DIR> tags, which create a directory list section. A
directory list presents a list of items that contains up to 20 characters. Items in this list
are typically arranged in columns, typically 24 characters wide. The tag or
htp.listitem must appear directly after you use this tag to define the items in the list.

Parameters

none

Generates
htp.dirlistOpen generates:

<DIR>

htp.dirlistClose generates:

</DIR>

A-22 Using Oracle Web Application Server™ Cartridges

htp.div

Syntax

Purpose

Parameters

Generates

htp.div(
calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.div(calign, cattributes) return varchar2;

Generates the <DIV> tag, which creates document divisions.

calign - the value for the ALIGN attribute

cattributes - other attributes to be included as-is in the tag

<DIV ALIGN="calign" cattributes>

A-23

htp.dlistOpen, htp.dlistClose

Syntax

Purpose

Parameters

Generates

htp.dlistOpen (
cclear in

varchar2
cattributes in varchar2

DEFAULT NULL
DEFAULT NULL);

htf.dlistOpen (cclear, cattributes) return varchar2;

htp.dlistClose;

htf.dlistClose return varchar2;

Generates the <DL> and </DL> tags, which create a definition list. A definition list
looks like a glossary: it contains terms and definitions. Terms are inserted using
htp.dlistTerm, and definitions are inserted using htp.dlistDef.

cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

htp.dlistOpen generates:

<DL CLEAR="cclear " cattributes

htp.dlistClose generates:

</DL>

A-24

>

Using Oracle Web Application Server™ Cartridges

htp.dlistDef

Syntax

Purpose

Parameters

Generates

htp.dlistDef(
ctext in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.dlistDef(ctext, cclear, cattributes) return varchar2;

Generates the <DD> tag, which is used to insert definitions of terms. This tag is used
in the context of the definition list <DL>, where terms are tagged with <DT> and
definitions are tagged with <DD>.

ctext - the definition for the term
cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

<DD CLEAR="cclear " cattributes >ctext

A-25

htp.dlistTerm

Syntax
htp.dlistTerm (
ctext in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.dlistTerm (ctext, cclear, cattributes) return varchar2;
Purpose
Generates the <DT> tag, which defines a term in a definition list <DL>.
Parameters
ctext - the term
cclear - the value for the CLEAR attribute
cattributes - other attributes to be included as-is in the tag
Generates

<DT CLEAR="cclear " -cattributes >ctext

A-26 Using Oracle Web Application Server™ Cartridges

htp.emphasis, htp.em

Syntax
htp.em (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.em (ctext, cattributes) return varchar2;
htp.emphasis (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.emphasis (ctext, cattributes) return varchar2;
Purpose
Generates the and tags, which define text to be emphasized.
Parameters
ctext - the text to emphasize
cattributes - other attributes to be included as-is in the tag
Generates

<EM cattributes >ctext

A-27

htf.escape_sc

Syntax

Purpose

Parameters

Returns

htf.escape_sc(ctext IN VARCHAR?2) return VARCHARZ2;

htp.escape_sc(ctext IN VARCHAR?2);

Replaces characters that have special meaning in HTML with their escape sequences.
The following characters are converted:

From To

& &

" "
<
>

Note that the procedure version of this subprogram does the same thing as htp.prints

and htp.ps.

ctext - the string to convert

The converted string.

A-28

Using Oracle Web Application Server™ Cartridges

htf.escape_url

Syntax

Purpose

Parameters

Returns

htf.escape_url(p_url IN VARCHAR?2) return VARCHAR?2;

Replaces characters that have special meaning in HTML and HTTP with their escape
sequences. The following characters are converted:

From To

& &
" "
< <

> >

% %25

p_url - the string to convert

The converted string.

A-29

htp.fontOpen, htp.fontClose

Syntax

Purpose

Parameters

Generates

htp.fontOpen(
ccolor in varchar2 DEFAULT NULL
cface in varchar2 DEFAULT NULL
csize in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.fontOpen(ccolor, cface, csize, cattributes) return varchar2;

htp.fontClose;

htf.fontClose return varchar2;

Generates the and tags, which mark a section of text with the
specified font characteristics.

ccolor - the value for the COLOR attribute
cface - the value for the FACE attribute
csize - the value for the SIZE attribute

cattributes - other attributes to be included as-is in the tag

htp.fontOpen generates:

htp.fontClose generates:

A-30 Using Oracle Web Application Server™ Cartridges

htp.formCheckbox

Syntax

Purpose

Parameters

Generates

htp.formCheckbox (
chame in varchar2
cvalue in varchar2 DEFAULT 'on’
cchecked in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.formCheckbox (cname, cvalue, cchecked, cattributes) return
varchar2;

Generates the <INPUT> tag with TYPE="checkbox”, which inserts a checkbox element
in a form. A checkbox element is a button that the user can toggle on or off.

cname - the value for the NAME attribute
cvalue - the value for the VALUE attribute

cchecked - if the value for this parameter is not NULL, the CHECKED attribute is
added to the tag

cattributes - other attributes to be included as-is in the tag

<INPUT TYPE="checkbox” NAME=" cname” VALUE=" cvalue " CHECKED
cattributes >

A-31

htp.formOpen, htp.formClose

Syntax

htp.formOpen (

curl

cmethod

ctarget

cenctype
cattributes in

varchar2
varchar2
varchar2
varchar2
varchar2

DEFAULT 'POST’

DEFAULT NULL
DEFAULT NULL);

htf.formOpen (curl, cmethod, ctarget, cenctype, cattributes) return

varchar2;

htp.formClose;

htf.formClose return varchar2;

Purpose

Generates the <FORM> and </FORM?> tags, which create a form section in an HTML

document.

Parameters

curl - the URL of the WRB cartridge or CGlI script to which the contents of the form is

sent. This parameter is required.

cmethod - the value for the METHOD attribute. The value can be “GET” or “POST”.

ctarget - the value for the TARGET attribute

cenctype - the value for the ENCTYPE attribute

cattributes - other attributes to be included as-is in the tag

Generates

htp.formOpen generates:

<FORM ACTION="curl * METHOD="cmethod " TARGET=" ctarget "

ENCTYPE="cenctype "

htp.formClose generates:

</[FORM>

cattributes>

A-32

Using Oracle Web Application Server™ Cartridges

htp.formHidden

Syntax

Purpose

Parameters

Generates

htp.formHidden (
chame in varchar2
cvalue in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formHidden (cname, cvalue, cattributes) return varchar2;

Generates the <INPUT> tag with TYPE="hidden”, which inserts a hidden form
element. This element is not seen by the user and is used to submit additional values
to the script.

cname - the value for the NAME attribute
cvalue - the value for the VALUE attribute

cattributes - other attributes to be included as-is in the tag

<INPUT TYPE="hidden” NAME=" cname” VALUE=" cvalue " cattributes >

A-33

htp.formlmage

Syntax

Purpose

Parameters

Generates

htp.formimage (

chame in varchar2
csrc in varchar2
calign in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.formlmage (cname, csrc, calign, cattributes) return varchar2;

Generates the <INPUT> tag with TYPE="image”, which creates an image field on
which the user can click and cause the form to be submitted immediately. The
coordinates of the selected point are measured in pixels, and returned (along with
other contents of the form) in two nam-/value pairs. The x coordinate is submitted
under the name of the field with ”.x” appended, and the y coordinate with the ".y”
appended. Any VALUE attribute is ignored.

cname - the VALUE for the NAME attribute
csrc - the value for the SRC attribute, which specifies the image file
calign - the value for the ALIGN attribute

cattributes - other attributes to be included as-is in the tag

<INPUT TYPE="image” NAME=" cname” SRC=" csrc " ALIGN=" calign
cattributes >

A-34 Using Oracle Web Application Server™ Cartridges

htp.formPassword

Syntax
htp.formPassword (
cname in varchar2
csize in varchar2
cmaxlength in varchar2 DEFAULT NULL

cvalue in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formPassword (cname, csize, cmaxlength, cvalue, cattributes)
return varchar2;

Purpose

Generates the <INPUT> tag with TYPE="password”, which creates a single-line text
entry field. When the user enters texet in the field, each character is represented by one
asterisk. This is usually used for entering passwords.

Parameters
cname - the value for the NAME attribute
csize - the value for the SIZE attribute
cmaxlength - the value for the MAXLENGTH attribute
cvalue - the value for the VALUE attribute

cattributes - other attributes to be included as-is in the tag

Generates

<INPUT TYPE="password” NAME=" cname” SIZE=" csize "
MAXLENGTH=(maxlength " VALUE=" cvalue " cattribute s>

A-35

htp.formRadio

Syntax

Purpose

Parameters

Generates

htp.formRadio (

chame in varchar2

cvalue in varchar2

cchecked in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formRadio (cname, cvalue, cchecked, cattributes) return varchar2;

Generates the <INPUT> tag with TYPE="radio”, which creates a radio button on the
HTML form.

Within a set of radio buttons, the user can select only one button. Each radio button in
the same set should have the same name, but different value. The selected radio button
generates a name/value pair.

cname - the value for the NAME attribute
cvalue - the value for the VALUE attribute

cchecked - if the value for this parameter is not NULL, the CHECKED attribute is
added to the tag

cattributes - other attributes to be included as-is in the tag

<INPUT TYPE="radio” NAME=" cname’ VALUE=" cvalue " CHECKED cattributes >

A-36 Using Oracle Web Application Server™ Cartridges

htp.formReset

Syntax
htp.formReset (
cvalue in varchar2 DEFAULT 'Reset’
cattributes in varchar2 DEFAULT NULL);
htf.formReset (cvalue, cattributes) return varchar2;
Purpose
Generates the <INPUT> tag with TYPE="reset”, which creates a button that, when
clicked, resets all the form fields to their initial values.
Parameters
cvalue - the value for the VALUE attribute
cattributes - other attributes to be included as-is in the tag
Generates

<INPUT TYPE=" reset "VALUE=" cvalue " cattributes >

A-37

htp.formSelectOpen, htp.formSelectClose

Syntax

Purpose

Parameters

Generates

Example

htp.formSelectOpen (

cname in varchar2
cprompt in varchar2 DEFAULT NULL
nsize in integer DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.formSelectOpen (cname, cprompt, nsize, cattributes) return
varchar2;

htp.formSelectClose;

htf.formSelectClose return varchar2;

Generates the <SELECT> and </SELECT> tags, which create a Select form element. A
Select form element is a listbox, from which the user can select one or more values. The

values are inserted using htp.formSelectOption.

cname - the value for the NAME attribute
cprompt - the string preceding the list box
nsize - the value for the SIZE attribute

cattributes - other attributes to be included as-is in the tag

htp.formSelectOpen generates:

cprompt <SELECT NAME="cname ” SIZE= "nsize” cattributes>

htp.formSelectClose generates:

</SELECT>

htp.formSelectOpen('greatest_player’;
'Pick the greatest player:’);
htp.formSelectOption('Messier’);
htp.formSelectOption("Howe’);
htp.formSelectOption('Gretzky’);.
htp.formSelectClose;

Generates:

Pick the greatest player:

<SELECT NAME="greatest_player">
<OPTION>Messier

<OPTION>Howe

<OPTION>Gretzky

</SELECT>

A-38 Using Oracle Web Application Server™ Cartridges

htp.formSelectOption

Syntax

Purpose

Parameters

Generates

Example

htp.formSelectOption (
cvalue in varchar2
cselected in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formSelectOption (cvalue, cselected, cattributes) return
varchar2;

Generates the <OPTION> tag, which represents one choice in a Select element.

cvalue - the text for the option

cselected - if the value for this parameter is not NULL, the SELECTED attribute is
added to the tag

cattributes - other attributes to be included as-is in the tag

<OPTION SELECTED cattributes>cvalue

See htp.formSelectOpen, htp.formSelectClose

A-39

htp.formSubmit

Syntax

Purpose

Parameters

Generates

htp.formSubmit (
chame in varchar2 DEFAULT NULL
cvalue in varchar2 DEFAULT 'Submit’
cattributes in varchar2 DEFAULT NULL);

htf.formSubmit (cname, cvalue, cattributes) return varchar2;

Generates the <INPUT> tag with TYPE="submit”, which creates a button that, when
clicked, submits the form.

If the button has a NAME attribute, the button contributes a name/value pair to the
submitted data.

cname - the value for the NAME attribute
cvalue - the value for the VALUE attribute

cattributes - other attributes to be included as-is in the tag

<INPUT TYPE="submit” NAME=" cname” VALUE=" cvalue " cattributes >

A-40 Using Oracle Web Application Server™ Cartridges

htp.formText

Syntax
htp.formText (
chame in varchar2
csize in varchar2 DEFAULT NULL
cmaxlength in varchar2 DEFAULT NULL
cvalue in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.formText (cname, csize, cmaxlength, cvalue, cattributes) return
varchar2;
Purpose
Generates the <INPUT> tag with TYPE="text”, which creates a field for a single line of
text.
Parameters
cname - the value for the NAME attribute
csize - the value for the SIZE attribute
cmaxlength - the value for the MAXLENGTH attribute
cvalue - the value for the VALUE attribute
cattributes - other attributes to be included as-is in the tag
Generates

<INPUT TYPE="text” NAME=" cname” SIZE=" csize " MAXLENGTH="cmaxlength "
VALUE="cvalue " cattributes >

A-41

htp.formTextarea, htp.formTextarea2

Syntax

Purpose

Parameters

Generates

htp.formTextarea (

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formTextarea (cname, nrows, ncolumns, calign, cattributes) return

varchar2;

htp.formTextarea2 (

cname in varchar2

nrows in integer

ncolumns in integer

calign in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL

htf.formTextarea2 (cname, nrows, ncolumns, calign, cwrap,
cattributes) return varchar2;

Generates the <TEXTAREA> tag, which creates a text field that has no predefined text
in the text area. This field is used to enable the user to enter several lines of text.

The difference between these subprograms is that htp.formTextarea2 has the cwrap

parameter, which specifies a wrap style.

cname - the value for the NAME attribute

nrows - the value for the ROWS attribute. This is an integer.

ncolumns - the value for the COLS attribute. This is an integer.

calign - the value for the ALIGN attribute
cwrap - the value for the WRAP attribute

cattributes - other attributes to be included as-is in the tag

htp.formTextarea generates:

<TEXTAREA NAME=tname’ ROWS="nrows” COLS=" ncolumns”

cattributes ></TEXTAREA>

htp.formTextarea2 generates:

<TEXTAREA NAME=¢tname” ROWS="nrows” COLS=" ncolumns”

WRAP="cwrap” cattributes ></TEXTAREA>

ALIGN=" calign

ALIGN=" calign

A-42 Using Oracle Web Application Server™ Cartridges

htp.formTextareaOpen, htp.formTextareaOpen2, htp.formTextareaClose

Syntax
htp.formTextareaOpen (
cname in varchar2
nrows in integer
ncolumns in integer

calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formTextareaOpen (cname, nrows, ncolumns, calign, cattributes)
return varchar2;

htp.formTextareaOpen2(
cname in varchar2
nrows in integer
ncolumns in integer
calign in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.formTextareaOpen2(cname, nrows, ncolumns, calign, cwrap,
cattributes) return varchar2;

htp.formTextareaClose;

htf.formTextareaClose return varchar2;
Purpose

Generates the <TEXTAREA> and </TEXTAREA> tags, which creates a text area form
element.

The difference between the two open subprograms is that htp.formTextareaOpen2 has
the cwrap parameter, which specifies a wrap style.

Parameters
cname - the value for the NAME attribute
nrows - the value for the ROWS attribute. This is an integer.
ncolumns - the value for the COLS attribute. This is an integer.
calign - the value for the ALIGN attribute
cwrap - the value for the WRAP attribute

cattributes - other attributes to be included as-is in the tag

Generates
htp.formTextareaOpen generates:

<TEXTAREA NAME=tname” ROWS="nrows " COLS=" ncolumns” ALIGN="calign
cattributes >

htp.formTextareaOpen?2 generates:

<TEXTAREA NAME=tname” ROWS="nrows " COLS=" ncolumns” ALIGN=" calign
WRAP =" cwrap” cattributes >

htp.formTextareaClose generates:

</ITEXTAREA>

A-43

htp.frame

Syntax

Purpose

Parameters

Generates

htp.frame(

csrc in varchar2

chame invarchar2 DEFAULT NULL
cmarginwidth in varchar2 DEFAULT NULL
cmarginheight invarchar2 DEFAULT NULL
cscrolling in varchar2 DEFAULT NULL
choresize invarchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.frame(csrc, cname, cmarginwidth, cmarginheight, cscrolling,
cnoresize, cattributes) return varchar2;

Generates the <FRAME> tag, which defines the characteristics of a frame created by a
<FRAMESET> tag.

csrc - the URL to display in the frame

cname - the value for the NAME attribute

cmarginwidth - the value for the MARGINWIDTH attribute
cmarginheight - the value for the MARGINHEIGHT attribute
cscrolling - the value for the SCROLLING attribute

noresize - if the value for this parameter is not NULL, the NORESIZE attribute is added
to the tag

cattributes - other attributes to be included as-is in the tag

<FRAME SRC="csrc” NAME="chame” MARGINWIDTH="cmarginwidth”
MARGINHEIGHT="cmarginheight” SCROLLING="cscrolling” NORESIZE
cattributes>

A-44 Using Oracle Web Application Server™ Cartridges

htp.framesetOpen, htp.framesetClose

Syntax

htp.framesetOpen(
crows in varchar2 DEFAULT NULL
ccols in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.framesetOpen(crows, ccols, cattributes) return varchar2;

htp.framesetClose;

htf.framesetClose return varchar2;

Purpose

Generates the <FRAMESET> and </FRAMESET> tags, which define a frameset

section.

Parameters
crows - the value for the ROWS attribute
ccols - the value for the COLS attribute

cattributes - other attributes to be included as-is in the tag

Generates
htp.framesetOpen generates:

<FRAMESET ROWS="nrows” COLS="ccols">

htp.framesetClose generates:

</FRAMESET>

A-45

htp.headOpen, htp.headClose

Syntax
htp.headOpen;
htf.headOpen return varchar2;
htp.headClose;
htf.headClose return varchar2;
Purpose
Generates the <HEAD> and </HEAD> tags, which mark the HTML document head
section.
Generates

htp.headOpen generates:

<HEAD>

htp.headClose generates:

</HEAD>

A-46 Using Oracle Web Application Server™ Cartridges

htp.header

Syntax
htp.header (
nsize in integer
cheader in varchar2
calign in varchar2 DEFAULT NULL
cnowrap in varchar2 DEFAULT NULL

cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.header (nsize, cheader, calign, cnowrap, cclear, cattributes)
return varchar2;

Purpose

Generates opening heading tags (<H1>to <H6>) and their corresponding closing tags
(</H1>to </H6>).

Parameters
nsize - the heading level. This is an integer between 1 and 6.
cheader - the text to display in the heading
calign - the value for the ALIGN attribute
cnowrap - the value for the NOWRAP attribute
cclear - the value for the CLEAR attribute
cattributes - other attributes to be included as-is in the tag

Generates

<Hnsize ALIGN=" calign " NOWRAP CLEAR="cclear ”
cattributes >cheader </H nsize >

Example
htp.header (1,'Overview’);

produces

<H1>Overview</H1>

A-47

htp.htmIOpen, htp.htmIClose

Syntax

Purpose

Parameters

Generates

htp.htmlOpen;

htf.htmlOpen return varchar2;

htp.htmiClose;

htf.htmlClose return varchar2;

Generates the <HTML> and </HTML> tags, which mark the beginning and the end

of an HTML document.

none

htp.htmIlOpen generates:

<HTML>

htp.htmIClose generates:

</HTML>

A-48

Using Oracle Web Application Server™ Cartridges

htp.img, htp.img2

Syntax

Purpose

Parameters

Generates

htp.img (
curl in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
calt in varchar2 DEFAULT NULL
cismap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.img (curl, calign, calt, cismap, cattributes) return varchar2;

htp.img2(
curl in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
calt in varchar2 DEFAULT NULL
cismap in varchar2 DEFAULT NULL
cusemap in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.img2(curl, calign, calt, cismap, cusemap, cattributes) return
varchar2;

Generates the tag, which directs the browser to load an image onto the HTML
page.

The difference between these subprograms is that htp.img2 takes the cusemap
parameter.

curl - the value for the SRC attribute
calign - the value for the ALIGN attribute

calt - the value for the ALT attribute, which specifies alternative text to display if the
browser does not support images

cismap - if the value for this parameter is not NULL, the ISMAP attribute is added to
the tag. The attribute indicates that the image is an imagemap.

cusemap - the value for the USEMAP attribute, which specifies a client-side image
map.

cattributes - other attributes to be included as-is in the tag

htp.img generates:

htp.img2 generates:
<IMG SRC="curl " ALIGN=" calign " ALT=" calt " ISMAP USEMAP="cusemap”

cattributes >

A-49

htp.isindex

Syntax

Purpose

Parameters

Generates

htp.isindex (
cprompt in varchar2
curl in varchar2

htf.isindex (cprompt, curl) return varchar2;

DEFAULT NULL
DEFAULT NULL);

Creates a single entry field with a prompting text, such as “enter value," then sends that
value to the URL of the page or program.

cprompt - the value for the PROMPT attribute

curl - the value for the HREF attribute

<ISINDEX PROMPT="cprompt " HREF=" curl ">

A-50

Using Oracle Web Application Server™ Cartridges

htp.italic

Syntax
htp.italic (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.italic (ctext, cattributes) return varchar2;
Purpose
Generates the <I> and </1> tags, which direct the browser to render the text in italics.
Parameters
ctext - the text to be rendered in italics
cattributes - other attributes to be included as-is in the tag
Generates

<| cattributes >ctext </I1>

A-51

htp.keyboard, htp.kbd

Syntax

Purpose

Parameters

Generates

htp.keyboard (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL

htf.keyboard (ctext, cattributes) return varchar2;

htp.kbd (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL

htf.kbd (ctext, cattributes) return varchar2;

Generates the <KBD> and </KBD> tags, which direct the browser to render the text in

monospace. These subprograms do the same thing.

ctext - the text to render in monospace

cattributes - other attributes to be included as-is in the tag

<KBD cattributes >ctext </KBD>

A-52 Using Oracle Web Application Server™ Cartridges

htp.line, htp.hr

Syntax
htp.line (
cclear in varchar2 DEFAULT NULL
csrc in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.line (cclear, csrc, cattributes) return varchar2;
htp.hr (
cclear in varchar2 DEFAULT NULL
csrc in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.hr (cclear, csrc, cattributes) return varcharz;
Purpose
Generates the
 tag, which generates a line in the HTML document.
Parameters
cclear - the value for the CLEAR attribute
csrc - the value for the SRC attribute, which specifies a custom image as the source of
the line
cattributes - other attributes to be included as-is in the tag
Generates

<HR CLEAR="cclear " SRC=" csrc " cattributes >

A-53

htp.linkRel

Syntax

Purpose

Parameters

Generates

htp.linkRel (
crel in varchar2
curl in varchar2

ctitte in varchar2 DEFAULT NULL);

htf.linkRel (crel, curl, ctitle) return varchar2;

Generates the <LINK> tag with the REL attribute, which gives the relationship
described by the hypertext link from the anchor to the target. This is only used when
the HREF attribute is present. This tag indicates a relationship between documents, but
does not create a link. To create a link, use htp.anchor, htp.anchor?2.

crel - the value for the REL attribute
curl - the value for the HREF attribute

ctitle - the value for the TITLE attribute

<LINK REL=" crel "HREF=" curl "TITLE=" ctitle ">

A-54 Using Oracle Web Application Server™ Cartridges

htp.linkRev

Syntax

Purpose

Parameters

Generates

htp.linkRev (
crev in varchar2
curl in varchar2

ctitte in varchar2 DEFAULT NULL);

htf.linkRev (crev, curl, ctitle) return varchar2;

Generates the <LINK> tag with the REV attribute, which gives the relationship
described by the hypertext link from the target to the anchor. This is the opposite of
htp.linkRel. This tag indicates a relationship between documents, but does not create
a link. To create a link, use htp.anchor, htp.anchor2.

crev - the value for the REV attribute
curl - the value for the HREF attribute

ctitle - the value for the TITLE attribute

<LINK REV=" crev "HREF=" curl "TITLE=" ctitle ">

A-55

htp.listHeader

Syntax

Purpose

Parameters

Generates

htp.listHeader (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.listHeader (ctext, cattributes) return varchar2;

Generates the <LH> and </LH> tags, which printan HTML tag at the beginning of the
list.

ctext - the text to place between <LH> and </LH>

cattributes - other attributes to be included as-is in the tag

<LH cattributes >ctext </LH>

A-56 Using Oracle Web Application Server™ Cartridges

htp.listingOpen, htp.listingClose

Syntax
htp.listingOpen;
htf.listingOpen return varchar2;
htp.listingClose;
htf.listingClose return varchar2;
Purpose
Generates the <LISTING> and </LISTING> tags, which mark a section of fixed-width
text in the body of an HTML page.
Parameters
none
Generates

htp.listingOpen generates;

<LISTING>

htp.listingClose generates:

</LISTING>

A-57

htp.listltem

Syntax

Purpose

Parameters

Generates

htp.listitem (
ctext in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL
cdingbat in varchar2 DEFAULT NULL
csrc in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.listitem (ctext, cclear, cdingbat, csrc, cattributes) return
varchar2;

Generates the tag, which indicates a list item.

ctext - the text for the list item

cclear - the value for the CLEAR attribute
cdingbat - the value for the DINGBAT attribute
csrc - the value for the SRC attribute

cattributes - other attributes to be included as-is in the tag

<LI CLEAR=" cclear " DINGBAT=" cdingbat " SRC=" csrc " cattributes >ctext

A-58 Using Oracle Web Application Server™ Cartridges

htp.mailto

Syntax
htp.mailto (
caddress in varchar2
ctext in varchar2
chame in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.mailto (caddress, ctext, cname, cattributes) return varchar2;
Purpose
Generates the <A> tag with the HREF set to ‘mailto’ prepended to the mail address
argument.
Parameters
caddress - the email address of the recipient
ctext - the clickable portion of the link
cname - the value for the NAME attribute
cattributes - other attributes to be included as-is in the tag
Generates
Sctext
Example

htp.mailto('pres@white_house.gov’,’'Send Email to the President’);

generates

Send Email to the President

A-59

htp.mapOpen, htp.mapClose

Syntax

Purpose

Parameters

Generates

htp.mapOpen(
chame
cattributes in

in varchar2
varchar2

DEFAULT NULL);

htf.mapOpen(cname, cattributes) return varchar2;

htp.mapClose;

htf.mapClose return varchar2;

Generates the <MAP> and </MAP> tags, which mark a set of regions in a client-side

image map.

cname - the value for the NAME attribute

cattributes - other attributes to be included as-is in the tag

htp.mapOpen generates:

<MAP NAME="cname" cattributes>

htp.mapClose generates:

</MAP>

A-60

Using Oracle Web Application Server™ Cartridges

htp.menulistOpen, htp.menulistClose

Syntax
htp.menulistOpen;
htf.menulistOpen return varchar2;
htp.menulistClose;
htf.menulistClose return varchar2;
Purpose
Generates the <MENU> and </MENU> tags, which create a list that presents one line
per item. The items in the list appear more compact than an unordered list. The
htp.listitem defines the list items in a menu list.
Parameters
none
Generates

htp.menulistOpen generates:

<MENG

htp.menulistClose generates:

</MENU>

A-61

htp.meta

Syntax
htp.meta (
chttp_equiv in varchar2

chame in varchar2
ccontent in varchar2);

htf.meta (chttp_equiv, cname, ccontent) return varchar2;
Purpose

Generates the <META> tag, which enables you to embed meta-information about the
document and also specify values for HTTP headers. For example, you can specify the
expiration date, keywords, and author name.

Parameters
chttp_equiv - the value for the HTTP-EQUIV attribute
cname - the value for the NAME attribute
ccontent - the value for the CONTENT attribute
Generates
<META HTTP-EQUIV="chitp_equiv. " NAME =" cname” CONTENT="ccontent ">
Example
htp.meta ('Refresh’, NULL, 120);
generates
<META HTTP-EQUIV="Refresh” CONTENT=120>

On some web browsers, this causes the current URL to be reloaded automatically
every 120 seconds.

A-62 Using Oracle Web Application Server™ Cartridges

htp.nl, htp.br

Syntax

Purpose

Parameters

Generates

htp.nl (
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.nl (cclear, cattributes) return varchar2;
htp.br (
cclear in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.br (cclear, cattributes) return varchar2;

Generates the
 tag, which begins a new line of text.

cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

<BR CLEAR="cclear " cattributes >

A-63

htp.nobr

Syntax

Purpose

Parameters

Generates

htp.nobr(ctext in varchar2);

htf.nobr(ctext) return varchar2;

Generates the <NOBR> and </NOBR> tags, which turn off line-breaking in a section

of text.

ctext - the text that is to be rendered on one line

<NOBR>ctext</NOBR>

A-64

Using Oracle Web Application Server™ Cartridges

htp.noframesOpen, htp.noframesClose

Syntax

Purpose

Parameters

Generates

See Also

htp.noframesOpen

htf.noframesOpen return varchar?2;

htp.noframesClose

htf.noframesClose return varchar2;

Generates the <NOFRAMES> and </NOFRAMES> tags, which mark a no-frames
section.

none

htp.noframesOpen generates:

<NOFRAMES>

htp.noframesClose generates:

</NOFRAMES>

htp.frame, htp.framesetOpen, htp.framesetClose

A-65

htp.olistOpen, htp.olistClose

Syntax

Purpose

Parameters

Generates

htp.olistOpen (
cclear in
cwrap in
cattributes in

varchar2
varchar2
varchar2

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL);

htf.olistOpen (cclear, cwrap, cattributes) return varchar2;

htp.olistClose;

htf.olistClose return varchar2;

Generates the and tags, which define an ordered list. An ordered list
presents a list of numbered items. The numbered items are added using htp.listitem.

cclear - the value for the CLEAR attribute

cwrap - the value for the WRAP attribute

cattributes - other attributes to be included as-is in the tag

htp.olistOpen generates:

<OL CLEAR="cclear "WRAP="cwrap”

htp.olistClose generates:

A-66

cattributes >

Using Oracle Web Application Server™ Cartridges

htp.para, htp.paragraph

Syntax

Purpose

Parameters

Generates

htp.para;

htf.para return varcahr2;

htp.paragraph (

calign in varchar2 DEFAULT NULL
chowrap in varchar2 DEFAULT NULL
cclear in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.paragraph (calign, cnowrap, cclear, cattributes) return varchar2;

Generates the <P> tag, which indicates that the text that comes after the tag is to be
formatted as a paragraph.

htp.paragraph enables you add attributes to the tag.

calign - the value for the ALIGN attribute

cnowrap - if the value for this parameter is not NULL, the NOWRAP attribute is added
to the tag

cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

htp.para generates:
<p>
htp.paragraph generates:

<P ALIGN=" calign " NOWRAP CLEAR="cclear " -cattributes >

A-67

htp.param

Syntax

Purpose

Parameters

Generates

htp.param(
chame in varchar2
cvalue in varchar2);

htf.param(cname, cvalue) return varchar2;

Generates the <PARAM?> tag, which specifies parameters values for Java applets. The

values can reference HTML variables.

To invoke a Java applet from a web page, use htp.appletopen to begin the
invocation, use one htp.param for each desired name-value pair, and use
htp.appletclose to end the applet invocation.

cname - the value for the NAME attribu

te

cvalue - the value for the VALUE attribute

<PARAM NAMEename VALUE=cvalue >

A-68

Using Oracle Web Application Server™ Cartridges

htp.plaintext

Syntax

Purpose

Parameters

Generates

htp.plaintext(
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.plaintext(ctext, cattributes) return varchar2;

Generates the <PLAINTEXT> and </PLAINTEXT> tags, which direct the browser to
render the text they surround in fixed-width type.

ctext - the text to be rendered in fixed-width font

cattributes - other attributes to be included as-is in the tag

<PLAINTEXT cattributes>ctext</PLAINTEXT>

A-69

htp.preOpen, htp.preClose

Syntax

htp.preOpen (
cclear in varchar2 DEFAULT NULL
cwidth in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);

htf.preOpen (cclear, cwidth, cattributes) return varchar2;

htp.preClose;

htf.preClose return varchar2;
Purpose

Generates the <PRE> and </PRE> tags, which mark a section of preformatted text in
the body of the HTML page.

Parameters

cclear - the value for the CLEAR attribute

cwidth - the value for the WIDTH attribute

cattributes - other attributes to be included as-is in the tag
Generates

htp.preOpen generates:

<PRE CLEAR="cclear " WIDTH=" cwidth " cattributes >

htp.preClose generates:

</PRE>

A-70 Using Oracle Web Application Server™ Cartridges

htp.print, htp.prn

Syntax

Purpose

Parameters

Generates

htp.print (cbuf in varchar2 | dbuf in date | nbuf in number);

htp.prn(cbuf in varchar2 | dbuf in date | nbuf in number);

htp.print generates the specified parameter as a string terminated with the \n newline
character.

Note that the \n character is not the same as
 \n is used to format the HTML
source; it does not affect how the browser renders the HTML source. Use
to
control how the browser renders the HTML source.

htp.prn generates the specified parameter as a string. Unlike htp.print, the string is not
terminated with the \n newline character.

These subprograms are procedures only, they do not come as functions.

cbuf, dbuf, nbuf - the string to generate

htp.print generates a string terminated with a newline.

htp.prn generates the specified string, not terminated with a newline.

A-71

htp.prints, htp.ps

Syntax

htp.prints (ctext in varchar2);

htp.ps (ctext in varchar2);

Purpose

Both these subprograms generate a string and replaces all occurrences of the following
characters with the corresponding escape sequence.

Replaces this character

with this escape sequence

<

<

>

>

"

&

&

If not replaced, the special characters would be interpreted as HTML control characters
and would produce garbled output. This procedure is the same as htp.prn but with

the character substitution.

These subprograms are procedures only, they are not available as functions. If you
need a string conversion function, use htf.escape_sc.

Parameters

ctext - the string in which to perform character substitution

Generates

A string.

A-T2

Using Oracle Web Application Server™ Cartridges

htp.s

Syntax
htp.s(
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.s(ctext, cattributes) return varchar2;
Purpose
Generates the <S> and </S> tags, which direct the browser to render the text they
surround in strikethrough type.
Parameters
ctext - the text to render in strikethrough type
cattributes - other attributes to be included as-is in the tag
Generates

<S cattributes>ctext</S>

A-73

htp.sample

Syntax

Purpose

Parameters

Generates

htp.sample (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.sample (ctext, cattributes) return varchar2;

Generates the <SAMP> and </SAMP> tags, which direct the browser to render the
text they surround in monospace font.

ctext - the text to render in monospace font

cattributes - other attributes to be included as-is in the tag

<SAMP cattributes >ctext </SAMP>

A-74 Using Oracle Web Application Server™ Cartridges

htp.script

Syntax

Purpose

Parameters

Generates

Example

htp.script(
cscript in varchar2
clanguage in varchar2 DEFAULT NULL);

htf.script(cscript, clanguage) return varchar2;

Gemerates the <SCRIPT> and </SCRIPT> tags, which contain a script written in
languages such as JavaScript and VBscript.

cscript - the text of the script. This is the text that makes up the script itself, not the
name of a file containing the script.

clanguage - the langauge in which the script is written. If this parameter is omitted, the
user’s browser determines the scripting language.

<SCRIPT LANGUAGE=language>cscript </SCRIPT>

htp.script (Erupting_Volcano’, 'Javascript’);

Generates:

<SCRIPT LANGUAGE=Javascript> "script text here"
</SCRIPT>

This would cause the browser to run the script enclosed in the tags.

A-75

htp.small

Syntax

Purpose

Parameters

Generates

htp.small(
ctext in varchar2
cattributes in varchar2

DEFAULT NULL);

htf.small(ctext, cattributes) return varchar2;

Generates the <SMALL> and </SMALL> tags, which direct the browser to render the

text they surround using a small font.

ctext - the text to render in a small font

cattributes - other attributes to be included as-is in the tag

<SMALL cattributes>ctext</SMALL>

A-76

Using Oracle Web Application Server™ Cartridges

htp.strike

Syntax

Purpose

Parameters

Generates

htp.strike(
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.strike(ctext, cattributes) return varchar2;

Generates the <STRIKE> and </STRIKE> tags, which direct the browser to render the
text they surround in strikethrough type.

ctext - the text to be rendered in strikethrough type

cattributes - other attributes to be included as-is in the tag

<STRIKE cattributes>ctext</STRIKE>

A-T7

htp.strong

Syntax

Purpose

Parameters

Generates

htp.strong (
ctext
cattributes in

in

varchar2
varchar2

DEFAULT NULL);

htf.strong (ctext, cattributes) return varchar2;

Generates the and tags, which direct the browser to render
the text they surround in bold.

ctext - the text to be emphasized

cattributes - other attributes to be included as-is in the tag

<STRONGcattributes

>ctext

A-78

Using Oracle Web Application Server™ Cartridges

htp.style

Syntax

Purpose

Parameters

Generates

htp.style(cstyle in varchar2);

htf.style(cstyle) return varchar2;

Generates the <STYLE> and </STYLE> tags, which include a style sheet in your web
page. Style sheets are a feature of HTML 3.2. You can get more information about style
sheets at http://www.w3.0rg.

This feature is generally not compatible with browsers that support only HTML
versions 2.0 or earlier. Such browsers will ignore this tag.

cstyle - the style information to include

<STYLE>cstyle </STYLE>

A-79

htp.sub

Syntax

Purpose

Parameters

Generates

htp.sub(
ctext in varchar2
calign in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.sub(ctext, calign, cattributes) return varchar2;

Generates the _{and} tags, which direct the browser to render the text
they surround as subscript.

ctext - the text to render in subscript
calign - the value for the ALIGN attribute

cattributes - other attributes to be included as-is in the tag

_{ctext}

A-80 Using Oracle Web Application Server™ Cartridges

htp.sup

Syntax

Purpose

Parameters

Generates

htp.sup(
ctext in varchar2
calign in varchar2 DEFAULT NULL

cattributes in varchar2 DEFAULT NULL);

htf.sup(ctext, calign, cattributes) return varchar2;

Generates the ^{and} tags, which direct the browser to render the text
they surround as superscript.

ctext - the text to render in subscript
calign - the value for the ALIGN attribute

cattributes - other attributes to be included as-is in the tag

^{ctext}

A-81

htp.tableCaption

Syntax
htp.tableCaption (
ccaption in varchar2
calign in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.tableCaption (ccaption, calign, cattributes) return varchar2;
Purpose
Generates the <CAPTION> and </CAPTION> tags, which place a caption in an
HTML table.
Parameters
ccaption - the text for the caption
calign - the value for the ALIGN attribute
cattributes - other attributes to be included as-is in the tag
Generates

<CAPTION ALIGN=" calign " cattributes >ccaption </CAPTION>

A-82 Using Oracle Web Application Server™ Cartridges

htp.tableData

Syntax
htp.tableData (
cvalue in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
cdp in varchar2 DEFAULT NULL
chowrap in varchar2 DEFAULT NULL
crowspan in varchar2 DEFAULT NULL
ccolspan in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.tableData (cvalue, calign, cdp, chowrap, crowspan, ccolspan,
cattributes) return varchar2;
Purpose
Generates the <TD> and </TD> tags, which insert data into a cell of an HTML table.
Parameters
cvalue - the data for the cell in the table
calign - the value for the ALIGN attribute
cdp - the value for the DP attribute
cnowrap - if the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag
crowspan - the value for the ROWSPAN attribute
ccolspan - the value for the COLSPAN attribute
cattributes - other attributes to be included as-is in the tag
Generates

<TD ALIGN=" calign " DP=" cdp” ROWSPAN="crowspan " COLSPAN=" ccolspan "
NOWRARattributes >cvalue </TD>

A-83

htp.tableHeader

Syntax
htp.tableHeader (
cvalue in varchar2 DEFAULT NULL
calign in varchar2 DEFAULT NULL
cdp in varchar2 DEFAULT NULL
chowrap in varchar2 DEFAULT NULL
crowspan in varchar2 DEFAULT NULL
ccolspan in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL);
htf.tableHeader (cvalue, calign, cdp, cnowrap, crowspan, ccolspan,
cattributes) return varchar2;
Purpose
Generates the <TH> and </TH> tags, which insert a header cell in an HTML table.
<TH>s are similar to <TD>s, except that the text in the rows are usually rendered in
bold type.
Parameters
cvalue - the data for the cell in the table
calign - the value for the ALIGN attribute
cdp - the value for the DP attribute
cnowrap - if the value of this parameter is not NULL, the NOWRAP attribute is added
to the tag
crowspan - the value for the ROWSPAN attribute
ccolspan - the value for the COLSPAN attribute
cattributes - other attributes to be included as-is in the tag
Generates

<TH ALIGN=" calign " DP=" cdp” ROWSPAN="crowspan " COLSPAN=" ccolspan "
NOWRARcattributes >cvalue </TH>

A-84 Using Oracle Web Application Server™ Cartridges

htp.tableOpen, htp.tableClose

Syntax

htp.tableOpen (

cborder
calign
cnowrap
cclear

cattributes

varchar2;

htp.tableClose;

in
in

in

in
varchar2

htf.tableClose return varchar2;

Purpose

Generates the <TABLE> and </TABLE> tags, which define an HTML table.

Parameters

cborder - the value for the BORDER attribute
calign - the value for the ALIGN attribute

cnowrap - if the value of this parameter is not NULL, the NOWRAP attribute is added

to the tag

cclear - the value for the CLEAR attribute

cattributes - other attributes to be included as-is in the tag

Generates

htp.tableOpen generates:

<TABLE " cborder " NOWRAP ALIGN=" calign

htp.tableClose generates:

</TABLE>

A-85

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL);

htf.tableOpen (cborder, calign, cnowrap, cclear, cattributes) return

" CLEAR=" cclear

htp.tableRowOpen, htp.tableRowClose

Syntax

Purpose

Parameters

Generates

htp.tableRowOpen (

calign in varchar2
cvalign in varchar2
cdp in

chowrap in

cattributes in varchar2

DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL
DEFAULT NULL);

htf.tableRowOpen (calign, cvalign,cdp, cnowrap, cattributes) return

varchar2;

htp.tableRowClose;

htp.tableRowClose return varchar2;

Generates the <TR> and </TR> tags, which inserts a new row in an HTML table.

calign - the value for the ALIGN attribute

cvalign - the value for the VALIGN attribute

cdp - the value for the DP attribute

cnowrap - if the value of this parameter is not NULL, the NOWRAP attribute is added

to the tag

cattributes - other attributes to be included as-is in the tag

htp.tableRowOpen generates:

<TR ALIGN=" calign " VALIGN=" cvalign " DP=" cdp” NOWRAP catttributes >

htp.tableRowClose generates:

</TR>

A-86

Using Oracle Web Application Server™ Cartridges

htp.teletype

Syntax

Purpose

Parameters

Generates

htp.teletype (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.teletype (ctext, cattributes) return varchar2;

Generates the <TT> and </TT> tags, which direct the browser to render the text they
surround in a fixed width typewriter font, for example, the Courier font.

ctext - the text to render in a fixed width typewriter font

cattributes - other attributes to be included as-is in the tag

<TT cattributes >ctext </TT>

A-87

htp.title

Syntax

Purpose

Parameters

Generates

htp.title (ctitle in varchar2);

htf.title (ctitle) return varchar2;

Generates the <TITLE> and </TITLE> tags, which specify the text to display in the

titlebar of the browser window

ctitle - the text to display in the titlebar of the browser window

<TITLE> ctitle

</TITLE>

A-88

Using Oracle Web Application Server™ Cartridges

htp.ulistOpen, htp.ulistClose

Syntax
htp.ulistOpen (
cclear in varchar2 DEFAULT NULL
cwrap in varchar2 DEFAULT NULL
cdingbat in varchar2 DEFAULT NULL
csrc in varchar2 DEFAULT NULL
cattributes in varchar2 DEFAULT NULL
htf.ulistOpen (cclear, cwrap, cdingbat, csrc, cattributes) return
varchar2;
htp.ulistClose;
htf.ulistClose return varhar2;
Purpose
Generates the and tags, which define an unordered list. An unordered
list presents listed items marked off by bullets. You add list items with htp.listitem.
Parameters
cclear - the value for the CLEAR attribute
cwrap - the value for the WRAP attribute
cdingbat - the value for the DINGBAT attribute
csrc - the value for the SRC attribute
cattributes - other attributes to be included as-is in the tag
Generates

htp.ulistOpen generates:

<UL CLEAR="cclear” WRAP="cwrap” DINGBAT="cdingbat” SRC="csrc”
cattributes>

htp.ulistClose generates:

A-89

htp.underline

Syntax

Purpose

Parameters

Generates

htp.underline(
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);

htf.underline(ctext, cattributes) return varchar2;

Generates the <U> and </U> tags, which direct the browser to render the text they
surround with an underline.

ctext - the text to render with an underline

cattributes - other attributes to be included as-is in the tag

<U cattributes>ctext</U>

A-90 Using Oracle Web Application Server™ Cartridges

htp.variable

Syntax
htp.variable (
ctext in varchar2
cattributes in varchar2 DEFAULT NULL);
htf.variable (ctext, cattributes) return varchar2;
Purpose
Generates the <VAR> and </VAR> tags, which direct the browser to render the text
they surround in italics.
Parameters
ctext - the text to render in italics
cattributes - other attributes to be included as-is in the tag
Generates

<VAR cattributes >ctext </VAR>

A-91

htp.wbr

Syntax

Purpose

Parameters

Generates

htp.wbr;

htf.wbr return wbr;

Generates the <WBR> tag, which inserts a soft linebreak within a section of NOBR text.

none

<WBR>

A-92

Using Oracle Web Application Server™ Cartridges

The owa_cookie Package

This chapter describes the functions, procedures, and data types in the owa_cookie
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.
These sites have more information about cookies:

= http://home.netscape.com/newsref/std/cookie_spec.html

e http://www.virtual.net/Projects/Cookies/

Summary

owa_cookie.cookie data type - data type to contain cookie name-value pairs

owa_cookie.get function - gets the value of the specified cookie

owa_cookie.get_all procedure - gets all cookie name-value pairs

owa_cookie.remove procedure - removes the specified cookie

owa_cookie.send procedure - generates a “Set-Cookie” line in the HTTP header

owa_cookie.cookie data type

type cookie is RECORD (
name varchar2(4096),
vals vC_arr,
num_vals integer);

Since the HTTP standard allow cookie names to be overloaded (that is, multiple values
can be associated with the same cookie hame), this is a PL/SQL RECORD holding all
values associated with a given cookie name.

vc_arr is defined as:

type vc_arr is table of varchar2(4096) index by binary_integer

Note: The largest cookie that can be handled with OCI7 is 2000 bytes. If you use OCI8,
4000 bytes can be handled.

B-2 Using Oracle Web Application Server™ Cartridges

owa_cookie.get function

Syntax
owa_cookie.get(name in varchar2) return cookie;
Purpose
This function returns the values associated with the specified cookie. The values are
returned in a owa_cookie.cookie data type.
Parameters

name - the name of the cookie

Return Value

An owa_cookie.cookie data type.

B-3

owa_cookie.get_all procedure

vc_arr,

vc_arr,

integer);

This procedure returns all cookie names and their values from the client’s browser. The
values appear in the order in which they were sent from the browser.

Syntax
owa_cookie.get_all(
names out
vals out
num_vals out
Purpose
Parameters

names - the names of the cookies

vals - the values of the cookies

num_vals - the number of cookie-value pairs

B-4

Using Oracle Web Application Server™ Cartridges

owa_cookie.remove procedure

Syntax
owa_cookie.remove(
name in varchar2,
val in varchar2,
path in varchar2 DEFAULT NULL);
Purpose
This procedure forces a cookie to expire immediately by setting the “expires” field of
a Set-Cookie line in the HTTP header to “01-Jan-1990”. This procedure must be called
within the context of an HTTP header.
Parameters
name - the name of the cookie to expire
value - the value of the cookie
path - currently unused
Generates

Set-Cookie: <name>=<value> expires=01-JAN-1990

B-5

owa_cookie.send procedure

Syntax

owa_cookie.send(
name in varchar2,
value in varchar2,
expires in date DEFAULT NULL,
path in varchar2 DEFAULT NULL,
domain in varchar2 DEFAULT NULL,
secure in varchar2 DEFAULT NULL);

Purpose

This procedure generates a Set-Cookie line, which transmits a cookie to the client. This
procedure must occur in the context of an HTTP header.

Parameters
name -the name of the cookie
value - the value of the cookie
expires - the date at which the cookie will expire
path - the value for the path field
domain - the value for the domain field

secure - if the value of this parameter is not NULL, the “secure” field is added to the
line

Generates

Set-Cookie: <name>=<value> expires=<expires> path=<path>
domain=<domain> secure

B-6 Using Oracle Web Application Server™ Cartridges

APPENDIX

Summary

The owa_image Package

This chapter describes the functions, procedures, and data types in the owa_image
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

owa_image.NULL_POINT package variable - variable of type point whose X and Y
values are NULL

owa_image.point data type - data type to contain the X and Y values of a coordinate

owa_image.get x function - gets the X value of a point type

owa_image.get_y function - gets the Y value of a point type

owa_image.NULL_POINT package variable

This package variable of type point is used to default point parameters. Both the X
and the Y fields of this variable are NULL.

C-2 Using Oracle Web Application Server™ Cartridges

owa_image.point data type

This data type provides the x and y coordinates of a user’s click on an imagemap. It is
defined as:

type point is table of varchar2(32767) index by binary_integer

C-3

owa_image.get_x function

Syntax
owa_image.get_x(p in point) return integer;
Purpose
This function returns the X coordinate of the point where the user clicked on an image
map.
Parameters

p - the point where the user clicked

Return Value

The X coordinate as an integer.

C-4 Using Oracle Web Application Server™ Cartridges

owa_image.get_y function

Syntax

Purpose

Parameters

Return Value

owa_image.get_y(p in point) return integer;

This function returns the Y coordinate of the point where the user clicked on an image
map.

p - the point where the user clicked

The Y coordinate as an integer.

C-5

Using Oracle Web Application Server™ Cartridges

APPENDIX

Summary

The owa_opt_lock Package

This chapter describes the functions, procedures, and data types in the howa_opt_lock
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

owa_opt lock.vcArray data type - data type to contain ROWIDs

owa_opt_lock.checksum function - returns the checksum value

owa_opt_lock.get_rowid function - returns the ROWID value

owa_opt_lock.store_values procedure - stores unmodified values in hidden fields for
later verification

owa_opt_lock.verify_values function - verifies the stored values against modified
values

owa_opt_lock.vcArray data type

This data type is a PL/SQL table intended to hold ROWIDs.

type vcArray is table of varchar2(2000) index by binary_integer

Note: This is different from the owa_text.vc_arr data type.

D-2 Using Oracle Web Application Server™ Cartridges

owa_opt_lock.checksum function

Syntax

Purpose

Parameters

Return Value

owa_opt_lock.checksum(p_buff in varchar2) return number;

owa_opt_lock.checksum(

p_owner in varchar2
p_tname in varchar2
p_rowid in rowid)

return number;

This function returns a checksum value for a specified string, or for a row in a table.
For a row in a table, the function calculates the checksum value based on the values of
the columns in the row. This function comes in two versions.

The first version returns a checksum based on the specified string. This is a “pure” 32-
bit checksum executed by the database and based on the Internet 1 protocol.

The second version returns a checksum based on the values of a row in a table. This is
a “impure” 32-bit checksum based on the Internet 1 protocol.

p_buff - the string for which you want to calculate the checksum
p_owner - the owner of the table
p_tname - the table name

p_rowid - the row in p_tname for which you want to calculate the checksum value. You
can use the owa_opt_lock.get_rowid function to convert vcArray values to proper
rowids.

A checksum value.

owa_opt_lock.get_rowid function

Syntax
owa_opt_lock.get_rowid(p_old_values in vcArray) return rowid;
Purpose
This function returns the ROWID data type from the specified owa_opt_lock.vcArray
data type.
Parameters

p_old_values - this parameter is usually passed in from an HTML form.

Return Value

A ROWID.

D-4 Using Oracle Web Application Server™ Cartridges

owa_opt_lock.store_values procedure

Syntax
owa_opt_lock.store_values(
p_owner in varchar2

_tname in varchar2
p_rowid in rowid);

Purpose

This procedure stores the column values of the row that you want to update later. The
values are stored in hidden HTML form elements.

Before you update the row, you compare these values with the current row values to
ensure that the values in the row have not been changed. If the values have been
changed, you can warn the users and let them decide if the update should still take
place.

Parameters
p_owner - the owner of the table
p_tname - the name of the table

p_rowid - the row for which you want to store values

Generates
A series of hidden form elements.

< Onehidden form elementis created for the table owner. The name of the element
is “old_p_tname”, where p_tname is the name of the table. The value of the
element is the owner name.

= One hidden form element is created for the table name. The name of the element
is “old_p_tname”, where p_tname is the name of the table. The value of the
element is the table name.

= One element is created for each column in the row. The name of the element is
“old_p_tname”, where p_tname is the name of the table. The value of the element
is the column value.

See Also

owa_opt_lock.verify values function

D-5

owa_opt_lock.verify_values function

Syntax
owa_opt_lock.verify_values(p_old_values in vcArray) return boolean;
Purpose
This function verifies whether or not values in the specified row have been updated
since the last query. This function is used with the owa_opt_lock.store_values
procedure.
Parameters

p_old_values - a PL/SQL table containing the following information:

< p_old_values(1) specifies the owner of the table
< p_old_values(2) specifies the table
= p_old_values(3) specifies the rowid of the row you want to verify

= The remaining indexes contain values for the columns in the table.

Typically, this parameter is passed in from the HTML form, where you have
previously called the owa_opt_lock.store_values procedure to store the row values on
hidden form elements.

Return Value

TRUE if no other update has been performed; FALSE otherwise.

See Also

owa_opt_lock.store_values procedure

D-6 Using Oracle Web Application Server™ Cartridges

APPENDIX

Summary

The owa_pattern Package

This chapter describes the functions, procedures, and data types in the owa_pattern
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

owa_pattern.amatch function - determines if a string contains the specified pattern

owa_pattern.change function and procedure - replaces a pattern within a string

owa_pattern.getpat procedure - generates a pattern data type from a VARCHAR2 type

owa_pattern.match function - determines if a string contains the specified pattern

owa_pattern.pattern data type - data type used to store regular expressions

owa_pattern.amatch function

Syntax
owa_pattern.amatch(
line in VARCHAR2
from_loc in INTEGER
pat in VARCHAR?2
flags in VARCHAR2 DEFAULT NULL) return INTEGER,;
owa_pattern.amatch(
line in VARCHAR?2
from_loc in INTEGER
pat in out pattern
flags in VARCHAR2 DEFAULT NULL) return INTEGER,;
owa_pattern.amatch(
line in VARCHAR2
from_loc in INTEGER
pat in VARCHARZ2
backrefs out owa_text.vc_arr
flags in VARCHARZ2 DEFAULT NULL) return INTEGER,;
owa_pattern.amatch(
line in VARCHAR2
from_loc in INTEGER
pat inout pattern
backrefs out owa_text.vc_arr
flags in VARCHAR?2 DEFAULT NULL) return INTEGER,;
Purpose
This function enables you to specify if a pattern occurs in a particular location in a
string. There are four versions to this function:
= The first and second versions of the function do not save the matched tokens
(these are saved in the backrefs parameters in the third and fourth versions). The
difference between the first and second versions is the pat parameter, which can
be a VARCHAR?2 or a pattern data type.
= The third and fourth versions of the function save the matched tokens in the
backrefs parameter. The difference between the third and fourth versions is the
pat parameter, which can be a VARCHAR?2 or a pattern data type.
Note that if multiple overlapping strings can match the regular expression, this
function takes the longest match.
Parameters

line - the text to search in
from_loc - the location (in number of characters) in line where the search is to begin

pat - the string to match. It can contain regular expressions. This can be either a
VARCHAR? or a pattern. If it is a pattern, the output value of this parameter is the
pattern matched.

backrefs - the text that is matched. Each token that is matched is placed in a cell in the
owa_text.vc_arr data type PL/SQL table.

flags - whether or not the search is case-sensitive. If the value of this parameter is “i”,
the search is case-insensitive. Otherwise the search is case-sensitive.

E-2 Using Oracle Web Application Server™ Cartridges

Return Value

The index of the character after the end of the match, counting from the beginning of
line. If there was no match, the function returns 0.

E-3

owa_pattern.change function and procedure

Syntax

Purpose

Parameters

Return Value

Example

/* function */
owa_pattern.change(

line in out VARCHAR?2

from_str in VARCHAR2

to_str in VARCHAR2

flags in VARCHAR2 DEFAULT NULL) return INTEGER,;

/* procedure */
owa_pattern.change(

line in out VARCHAR?2

from_str in VARCHAR?2

to_str in VARCHAR2

flags in VARCHAR2 DEFAULT NULL);

[* function */
owa_pattern.change(

mline in out owa_text.multi_line

from_str in VARCHAR?2

to_str in VARCHAR2

flags in VARCHAR2 DEFAULT NULL) return INTEGER;

[* procedure */
owa_pattern.change(

mline in out owa_text.multi_line

from_str in VARCHAR2

to_str in VARCHAR2

flags in VARCHAR2 DEFAULT NULL);

This function or procedure performs a search and replace on a string or multi_line data
type.

Note that if multiple overlapping strings can match the regular expression, this
function takes the longest match.

line - the text to search in. The output value of this parameter is the altered string.

mline - the text to search in. This is a owa_text.multi_line data type data type. The
output value of this parameter is the altered string.

from_str - the regular expression to replace
to_str - the substitution pattern

flags - whether or not the search is case-sensitive, and whether or not changes are to be
made globally. If “i ™ is specified, the search is case-insensitive. If “g” is specified,
changes are made to all matches. Otherwise, the function stops after the first
substitution is made.

The number of substitutions made.

In the following example, num_found is 1, and theline is changed to “what is the idea?”.

create or replace procedure test_pattern as

E-4 Using Oracle Web Application Server™ Cartridges

theline VARCHAR2(256);
num_found integer;
begin
theline :=‘what is the goal?’;
num_found := owa_pattern.change(theline, ‘goal’, ‘idea’, ‘g");
htp.print(num_found); -- num_found is 1
htp.print(theline); -- theline is ‘what is the idea?’
end;
/
show errors

owa_pattern.getpat procedure

Syntax
owa_pattern.getpat(arg in VARCHAR?2, pat in out pattern);
Purpose
This procedure converts a VARCHAR?2 string into a owa_pattern.pattern data type.
Parameters

arg - the string to convert

pat - the owa_pattern.pattern data type initialized with arg

E-6 Using Oracle Web Application Server™ Cartridges

owa_pattern.match function

Syntax

Purpose

Parameters

owa_pattern.match(

line in VARCHAR2

pat in VARCHAR?2

flags in VARCHAR2 DEFAULT NULL) return boolean;
owa_pattern.match(

line in VARCHAR2

pat inout pattern

flags in VARCHAR2 DEFAULT NULL) return boolean;
owa_pattern.match(

line in VARCHAR?2

pat in VARCHAR2

backrefs out owa_text.vc_arr

flags in VARCHAR2 DEFAULT NULL) return boolean;
owa_pattern.match(

line in VARCHAR2

pat inout pattern

backrefs out owa_text.vc_arr

flags in VARCHAR2 DEFAULT NULL) return boolean;
owa_pattern.match(

mline in owa_text.multi_line

pat in VARCHAR2

rlist out owa_text.row_list

flags in VARCHAR2 DEFAULT NULL) return boolean;
owa_pattern.match(

mline in owa_text.multi_line

pat inout pattern

rlist out owa_text.row_list

flags in VARCHAR2 DEFAULT NULL) return boolean;

This function determines if a string contains the specified pattern. Pattern can contain
regular expressions.

Note that if multiple overlapping strings can match the regular expression, this
function takes the longest match.

line - the text to search in

mline - the text to search in. This is a owa_text.multi_line data type data type.

pat - the pattern to match. This is either a VARCHAR?2 or a owa_pattern.pattern data
type data type. It it is a pattern, the output value of this parameter is the pattern
matched.

backrefs - the text that is matched. Each token that is matched is placed in a cell in the
owa_text.vc_arr data type PL/SQL table.

rlist - an output parameter containing a list of matches

flags - whether or not the search is case-sensitive. If the value of this parameter is “i”,
the search is case-insensitive. Otherwise the search is case-sensitive.

Return Value

TRUE if a match was found, FALSE otherwise.

Examples

The following example searches for the string “goal” followed by any number of
characters in sometext. If found,

sometext VARCHAR2(256);
pat VARCHAR2(256);

sometext ;= 'what is the goal?'

pat :='goal.*;

if owa.pattern.match(sometext, pat) then
htp.print("Match found’);

else
htp.print(‘Match not found’);

end if;

E-8 Using Oracle Web Application Server™ Cartridges

owa_pattern.pattern data type

This data type is used to store regular expressions. It is defined as:

type pattern is TABLE OF VARCHAR2(4) index by BINARY_INTEGER

The advantage is that you can use a pattern as both an input and output parameter.
Thus, you can pass the same regular expressionto OWA_PATTERN function calls, and
it only has to be parsed once.

E-9

E-10 Using Oracle Web Application Server™ Cartridges

APPENDIX

Summary

The owa_sec Package

This chapter describes the functions, procedures, and data types in the owa_sec
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

owa_sec.get_client_hostname function - returns the client’s hostname

owa_sec.get_client_ip function - returns the client’s IP address

owa_sec.get_password function - returns the password that the user entered

owa_sec.get_user_id function - returns the username that the user entered

owa_sec.set_authorization procedure - enables the PL/SQL application to use custom
authentication

owa_sec.set_protection_realm procedure - defines the realm that the page is in

owa_sec.get_client_hostname function

Syntax

Purpose

Parameters

Return Value

owa_sec.get_client_hostname return varchar2;

This function returns the hostname of the client.

none

The hostname.

F-2

Using Oracle Web Application Server™ Cartridges

owa_sec.get_client_ip function

Syntax
owa_sec.get_client_ip return owa_util.ip_address;
Purpose
This function returns the IP address of the client.
Parameters

none

Return Value

The IP address. The owa_util.ip_address data type is a PL/SQL table where the first
four elements contain the four numbers of the IP address. For example, if the IP
address is 123.45.67.89 and the variable ipaddr is of the owa_util.ip_address data
type, the variable would contain the following values:

ipaddr(1) = 123
ipaddr(2) = 45
ipaddr(3) = 67
ipaddr(4) = 89

F-3

owa_sec.get_password function

Syntax
owa_sec.get_password return varchar2;
Purpose
This function returns the password that the user used to log in.
Parameters

none

Return Value

The password.

F-4 Using Oracle Web Application Server™ Cartridges

owa_sec.get_user_id function

Syntax
owa_sec.get_user_id return varchar2;
Purpose
This function returns the username that the user used to log in.
Parameters

none

Return Value

The username.

owa_sec.set_authorization procedure

Syntax

Purpose

Parameters

owa_sec.set_authorization(scheme in integer);

This procedure sets the authorization scheme for a PL/SQL Agent. Setting the scheme
parameter to GLOBALor PER_PACKAGEnables you to perform define your own
authentication routine. This procedure is called in the initialization portion of the
owa_init package.

scheme - the authorization scheme. It is one of:

OWA_SEC.NO_CHECK

Specifies that the PL/SQL application is not to do any custom authentication.
This is the default.

OWA_SEC.GLOBAL

Specifies that the owa_init.authorize function is to be used to authorize the user.
You have to define this function in the owa_init package.

OWA_SEC.PER_PACKAGE

Specifies that the package.authorize function or the anonymous authorize
function is to be used to authorize the user. You have to define this function. If
the request is for a procedure defined in a package, the package.authorize
function is called. If the request is for a procedure that is not in a package, the
anonymous authorize function is called.

The custom authorize function has the following signature:

function authorize return boolean;

If the function returns TRUE, authentication succeeded. If it returns FALSE,
authentication failed.

If the authorize function is not defined and scheme is set to GLOBALor PER_PACKAGE
the cartridge returns an error and fails.

F-6 Using Oracle Web Application Server™ Cartridges

owa_sec.set_protection_realm procedure

Syntax
owa_sec.set_protection_realm(realm in varchar2);
Purpose
This procedure sets the realm of the page that is returned to the user. The user needs
to enter a username and login that already exists in the realm for authorization to
succeed.
Parameters

realm - the realm in which the page should belong. This string is displayed to the user.

F-7

Using Oracle Web Application Server™ Cartridges

The owa_text Package

This chapter describes the functions, procedures, and data types in the owa_text
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

Summary

owa_text.add2multi procedure - adds text to an existing multi_line type

owa_text.multi_line data type - data type for holding large amounts of text
owa_text.row_list data type - data type for holding data to be processed

owa_text.new_row_list - creates a new row_list

owa_text.print_multi procedure - prints out the contents of a multi_list

owa_text.print_row_list procedure - prints out the contents of a row_list

owa_text.stream2multi procedure - converts a varchar2 to a multi_line type

owa_text.vc_arr data type - data type for holding large amounts of text

owa_text.add2multi procedure

Syntax
owa_text.add2multi(

stream in varchar2

mline inout multi_line

continue in boolean DEFAULT TRUE);
Purpose

This procedure adds content to an existing owa_text.multi_line data type data type.

Parameters

stream - the text to add

mline - the owa_text.multi_line data type data type. The output of this parameter
contains stream.

continue - if TRUE, the procedure appends stream within the previous final row
(assuming it is less than 32K). If FALSE, the procedure places stream in a new row.

G-2 Using Oracle Web Application Server™ Cartridges

owa_text.multi_line data type

This data type is a PL/SQL record that is used to hold large amounts of text. It is
defined as:

type multi_line is record (
rows vc_arr,
num_rows integer,
partial_row boolean);

The rows field, of type owa_text.vc_arr data type, contains the text data in the record.

G-3

owa_text.new_row_list

Syntax

Purpose

Parameters

Return Value

[* procedure */
owa_text.new_row_list(rlist out row_list);

/* function */
owa_text.new_row_list return row_list;

This function or procedure creates a new owa_text.row_list data type.

The function version takes no parameters and returns a new empty row_list.

The procedure version creates the row_list data type as an output parameter.

rlist - this is an output parameter containing the new row_list data type.

The function version returns the new row_list data type.

G-4 Using Oracle Web Application Server™ Cartridges

owa_text.print_multi procedure

Syntax

Purpose

Parameters

Generates

owa_text.print_multi(mline in multi_line);

This procedure uses htp.print, htp.prn to print the “rows” field of the
owa_text.multi_line data type.

mline - the multi_line data type to print out

The contents of the multi_line.

G-5

owa_text.print_row_list procedure

Syntax

Purpose

Parameters

Generates

owa_text.print_row_list(rlist in row_list);

This procedure uses htp.print, htp.prn to print the “rows” field of the

owa_text.row list data type.

rlist - the row_list data type to print out

The contents of the row_list.

G-6

Using Oracle Web Application Server™ Cartridges

owa_text.row_list data type

A PL/SQL record defined as:

type row_list is record (
rows int_arr,
num_rows integer);

int_arr is defined as:

type int_arr is table of integer index by binary_integer

G-7

owa_text.stream2multi procedure

Syntax
owa_text.stream2multi(
stream in varchar2
mline out multi_line);
Purpose
This procedure converts a string to a multi_line data type.
Parameters

stream - the string to convert

mline - the stream in owa_text.multi_line data type format

G-8 Using Oracle Web Application Server™ Cartridges

owa_text.vc_arr data type

This data type is defined as:

type vc_arr is table of varchar2(32767) index by binary_integer

This is a component of the owa_text.multi_line data type.

G-9

Using Oracle Web Application Server™ Cartridges

APPENDIX

Summary

The owa_util Package

This chapter describes the functions, procedures, and data types in the owa_util
package in the PL/SQL Web Toolkit.

Parameters that have default values are optional.

owa_util.bind_variables function - prepares a SQL query and binds variables to it

owa_util.calendarprint procedure - prints a calendar

owa_util.cellsprint procedure - prints the contents of a query in an HTML table

owa_util.choose_date procedure - generates HTML form elements that allow the user
to select a date

owa_util.dateType data type - data type to hold date information

owa_util.get_cgi_env function - returns the value of the specified CGI environment
variable

owa_util.get_owa_service_path function - returns the full virtual path for the cartridge

owa_util.get_procedure function - returns the name of the procedure that is invoked
by the PL/SQL Agent

owa_util.http _header_close procedure - closes the HTTP header

owa_util.ident_arr data type

owa_util.ip_address data type

owa_util.listprint procedure - generates a HTML form element that contains data from
aquery.

owa_util.mime_header procedure - generates the Content-type line in the HTTP
header

owa_util.print_cqi_env procedure - generates a list of all CGI environment variables
and their values

owa_util.redirect_url procedure - generates the Location line in the HTTP header

owa_util.showpage procedure - prints a page generated by the htp and htf packages in
SQL*Plus

owa_util.showsource procedure - prints the source for the specified subprogram

owa_util.signature procedure - prints a line that says that the page is generated by the
PL/SQL Agent

owa_util.status_line procedure - generates the Status line in the HTTP header

owa_util.tablePrint function - prints the data from a table in the database as an HTML
table

owa_util.todate function - converts dateType data to the standard PL/SQL date type

owa_util.who_called_me procedure - returns information on the caller of the
procedure

H-2 Using Oracle Web Application Server™ Cartridges

owa_util.bind_variables function

Syntax

Purpose

Parameters

Return Value

owa_util.bind_variables(

theQuery
bvliName
bvlValue
bv2Name
bv2Value
bv3Name
bv3Value

5925Name
bv25Value

varchar2 DEFAULT NULL
varchar2 DEFAULT NULL
varchar2 DEFAULT NULL
varchar2 DEFAULT NULL
varchar2 DEFAULT NULL
varchar2 DEFAULT NULL
varchar2 DEFAULT NULL

varchar2 DEFAULT NULL
varchar2 DEFAULT NULL) return integer;

This function prepares a SQL query by binding variables to it, and stores the output in
an opened cursor. You normally use this function as a parameter to a procedure to
which you desire to send a dynamically generated query. You can specify up to 25 bind

variables.

theQuery - the SQL query statement. This must be a SELECT statement.

bvlName - the name of the variable

bv2Value - the value of the variable

An integer identifying the opened cursor.

owa_util.calendarprint procedure

Syntax

owa_util.calendarprint(
p_query in varchar2
p_mf_only in varchar2 DEFAULT 'N%);

owa_util.calendarprint(
p_cursor in integer
p_mf_only in varchar2 DEFAULT 'N");

Purpose

This procedure creates a calendar in HTML. Each date in the calendar can contain any
number of hypertext links. To achieve this effect, design your query as follows:

= The first column should be a DATE. This is used to correlate the information
produced by the query with the calendar output automatically generated by the
procedure. Note: the query output must be sorted on this column using ORDER
BY.

« The second column contains the text, if any, you want printed for that date.

= The third column contains the destination for automatically generated links.
Each item in the second column becomes a hypertext link to the destination
given in this column. If this column is omitted, the items in the second column
are simple text, not links.

This procedure has 2 versions. Version 1 uses a hard-coded query stored in a varchar2
string. Version 2 uses a dynamic query prepared with the owa_util.bind_variables
function.

Parameters

p_query -aPL/SQL query. See the description above on what the query should return.
p_cursor - a PL/SQL cursor containing the same format as p_query.

p_mf_only - if “N” (the default), the generated calendar includes Sunday through
Saturday. Otherwise, it includes Monday through Friday only.

Generates

A calendar in the form of an HTML table with a visible border.

H-4 Using Oracle Web Application Server™ Cartridges

owa_util.cellsprint procedure

Syntax

Purpose

Parameters

Generates

owa_util.cellsprint(
p_theQuery in varchar2
p_max_rows in number DEFAULT 100
p_format_numbers in varchar2 DEFAULT NULL);

owa_util.cellsprint(
p_theCursor in integer
p_max_rows in number DEFAULT 100
p_format_numbers in varchar2 DEFAULT NULL);

owa_util.cellsprint(

p_theQuery in varchar2

p_max_rows in number DEFAULT 100

p_format_numbers in varchar2 DEFAULT NULL

p_skip_rec in number default O

p_more_data out boolean);
owa_util.cellsprint(

p_theCursor in integer

p_max_rows in number DEFAULT 100

p_format_numbers in varchar2 DEFAULT NULL

p_skip_rec in number default 0

p_more_data out boolean);

This procedure generates an HTML table from the output of a SQL query. SQL atomic
data items are mapped to HTML cells and SQL rows to HTML rows. You must write
the code to begin and end the HTML table.

There are four versions to this procedure. The first and second versions display rows
(up to the specified maximum) returned by the query or cursor. The third and fourth
versions allow you to exclude the specified number of rows from the HTML table. You
can also use the third and fourth versions to scroll through result sets by saving the last
row seen in a hidden form element.

p_theQuery - a SQL SELECT statement.

p_theCursor - a cursor ID. This can be the return value from the
owa_util.bind_variables function.

p_max_rows - the maximum number of rows to print

p_format_numbers - if the value of this parameter is not NULL, number fields are
right-justified and rounded to two decimal places

p_skip_rec - the number of rows to exclude from the HTML table

p_more_data - TRUE if there are more rows in the query or cursor, FALSE otherwise.

<tr><td> QueryResultltem </td><td> QueryResultitem </td></tr>
<tr><td> QueryResultltem </td><td> QueryResultltem </td></tr>

H-5

owa_util.choose_date procedure

Syntax

Purpose

Parameters

Generates

owa_util.choose_date(
p_name in varchar2,
p_date in date DEFAULT SYSDATE);

This procedure generates three HTML form elements that allow the user to select the
day, the month, and the year.

The parameter in the procedure that receives the data from these elements should be a
owa_util.dateType data type. You can use the owa_util.todate function to convert the
owa_util.dateType data type value to the standard Oracle7 DATE data type.

p_name - the name of the form elements

p_date - the initial date that is selected when the HTML page is displayed

<SELECT NAME="" SIZE="1">
<OPTION value="01">1
<OPTION value="02">2
<OPTION value="03">3
<OPTION value="04">4
<OPTION value="05">5
<OPTION value="06">6
<OPTION value="07">7
<OPTION value="08">8
<OPTION value="09">9
<OPTION value="10">10
<OPTION value="11">11
<OPTION value="12">12
<OPTION value="13">13
<OPTION value="14">14
<OPTION value="15">15
<OPTION value="16">16
<OPTION value="17">17
<OPTION value="18">18
<OPTION value="19">19
<OPTION value="20">20
<OPTION value="21">21
<OPTION value="22">22
<OPTION value="23">23
<OPTION SELECTED value="24">24
<OPTION value="25">25

H-6 Using Oracle Web Application Server™ Cartridges

<OPTION value="26">26

<OPTION value="27">27

<OPTION value="28">28

<OPTION value="29">29

<OPTION value="30">30

<OPTION value="31">31

</SELECT>

<SELECT NAME="p_name” SIZE="1">
<OPTION value="01">JAN

<OPTION SELECTED value="02">FEB
<OPTION value="03">MAR

<OPTION value="04">APR

<OPTION value="05">MAY

<OPTION value="06">JUN

<OPTION value="07">JUL

<OPTION value="08">AUG

<OPTION value="09">SEP

<OPTION value="10">0OCT

<OPTION value="11">NOV

<OPTION value="12">DEC
</SELECT>

<SELECT NAME="p_name” SIZE="1">
<OPTION value="1992">1992
<OPTION value="1993">1993
<OPTION value="1994">1994
<OPTION value="1995">1995
<OPTION value="1996">1996
<OPTION SELECTED value="1997">1997
<OPTION value="1998">1998
<OPTION value="1999">1999
<OPTION value="2000">2000
<OPTION value="2001">2001
<OPTION value="2002">2002
</SELECT>

H-7

owa_util.dateType data type

This data type holds date information. It is defined as:

type dateType is table of varchar2(10) index by binary_integer

The owa_util.todate function converts an item of this type to the type DATE, which is
understood and properly handled as data by the database. The procedure
owa_util.choose_date procedure enables the user to select the desired date.

H-8 Using Oracle Web Application Server™ Cartridges

owa_util.get_cgi_env function

Syntax

Purpose

Parameters

Return Value

owa_util.get_cgi_env(param_name in varchar2) return varchar2;

This function returns the value of the specified CGI environment variable. Although
the WRB is not operated through CGI, many WRB cartridges, including the PL/SQL
Cartridge, can make use of CGI enviroment variables.

param_name - the name of the CGI environment variable. It is case-insensitive.

The value of the specified CGI environment variable. If the variable is not defined, the
function returns NULL.

H-9

owa_util.get_owa_service_path function

Syntax
owa_util.get_owa_service_path return varchar2;
Purpose
This function returns the full virtual path of the PL/SQL Cartridge that is handling the
request.
Parameters
none

Return Value

A virtual path of the PL/SQL Cartridge that is handling the request.

H-10 Using Oracle Web Application Server™ Cartridges

owa_util.get_procedure function

Syntax
owa_util.get_procedure return varchar2;
Purpose
This function returns the name of the procedure that is being invoked by the PL/SQL
Agent.
Parameters
none

Return Value

The name of a procedure, including the package name if the procedure is defined in a
package.

H-11

owa_util.http_header_close procedure

Syntax

Purpose

Parameters

Generates

owa_util.http_header_close;

This procedure generates a newline character to close the HTTP header.

Use this procedure if you have not explicitly closed the header by using the
bclose_header parameter in calls such as owa_util.mime_header procedure,
owa_util.redirect_url procedure, or owa_util.status_line procedure. The HTTP header
must be closed before any htp.print or htp.prn calls.

none

A newline character, which closes the HTTP header.

H-12 Using Oracle Web Application Server™ Cartridges

owa_util.ident_arr data type

This data type is defined as:

type ident_arr is table of varchar2(30) index by binary_integer

H-13

owa_util.ip_address data type
This data type is defined as:

type ip_address is table of integer index by binary_integer

This data type is used by the owa_sec.get_client_ip function.

H-14 Using Oracle Web Application Server™ Cartridges

owa_util.listprint procedure

Syntax

Purpose

Parameters

Generates

owa_util.listprint(

p_theQuery in varchar2

p_cname in varchar2

p_nsize in number

p_multiple in boolean DEFAULT FALSE);
owa_util.listprint(

p_theCursor in integer

p_cname in varchar2

p_nsize in number

p_multiple in boolean DEFAULT FALSE);

This procedure generates an HTML selection list form element from the output of a
SQL query. The columns in the output of the query are handled in the following
manner:

= Thefirst column specifies the values that are sent back. These values for used for
the VALUE attribute of the OPTION tag.

= The second column specifies the values that the user sees.

= The third column specifies whether or not the row is marked as SELECTED in
the OPTION tag. If the value is not NULL, the row is selected.

There are two versions of this procedure. The first version contains a hard-coded SQL
query, and the second version uses a dynamic query prepared with the
owa_util.bind_variables function.

p_theQuery - the SQL query

p_theCursor - the cursor ID. This can be the return value from the
owa_util.bind_variables function.

p_cname - the name of the HTML form element

p_nsize - the size of the form element (this controls how many items the user can see
without scrolling)

p_multiple - whether multiple selection is permitted

<SELECT NAME="p_cname" SIZE="p_nsize">

<OPTION SELECTED
value='value_from_the_first_column’>value_from_the_second_column

<OPTION SELECTED
value='value_from_the_first_column’>value_from_the_second_column

</SELECT>

H-15

owa_util.mime_header procedure

Syntax

Purpose

Parameters

Generates

owa_util.mime_header(
ccontent_type in varchar2 DEFAULT ‘text/html’,
bclose_header in boolean DEFAULT TRUE);

This procedure changes the default MIME header that the PL/SQL Agent returns.

This procedure must come before any htp.prin ~ tor htp.prn calls in order to direct
the PL/SQL Agent not to use the default.

ccontent_type - the MIME type to generate

bclose_header - whether or not to close the HTTP header. If TRUE, two newlines are
sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP
header is still open.

Content-type: <ccontent_type>\n\n

H-16 Using Oracle Web Application Server™ Cartridges

owa_util.print_cgi_env procedure

Syntax

Purpose

Parameters

Generates

owa_util.print_cgi_env;

This procedure generates all the CGI environment variables and their values made
available by the PL/SQL Agent to the PL/SQL procedure.

none

A list in the following format:

cgi_env_var_name = value\n

H-17

owa_util.redirect_url procedure

Syntax

Purpose

Parameters

Generates

owa_util.redirect_url(
curl in varchar2
bclose_header in boolean DEFAULT TRUE);

This procedure specifies that the Web Application Server is to visit the specified URL.
The URL may specify either a web page to return or a program to execute.

This procedure must come before any htp.prin torhtp.prn calls in order to tell the
PL/SQL Agent to do the redirect.

curl - the URL to visit

bclose_header - whether or not to close the HTTP header. If TRUE, two newlines are
sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP
header is still open.

Location: <curl>\n\n

H-18 Using Oracle Web Application Server™ Cartridges

owa_util.showpage procedure

Syntax

Purpose

Parameters

Generates

owa_util.showpage;

This procedure prints out the HTML output of a procedure in SQL*Plus, SQL*DBA, or
Oracle Server Manager. The procedure must use the htp or htf packages to generate
the HTML page, and this procedure must be issued after the procedure has been called
and before any other HTP or HTF subprograms are directly or indirectly called. This
method is useful for generating pages filled with static data.

Note that this procedure uses dbms_output and is limited to 255 characters per line
and an overall buffer size of 1,000,000 bytes.

none

The output of htp procedure is displayed in SQL*Plus, SQL*DBA, or Oracle Server
Manager. For example:

SQL> set serveroutput on

SQL> spool gretzky.html

SQL> execute hockey.pass('Gretzky”)
SQL> execute owa_util.showpage
SQL> exit

This would generate an HTML page that could be accessed from web browsers.

H-19

owa_util.showsource procedure

Syntax
owa_util.showsource (cname in varchar2);
Purpose
This procedure prints the source of the specified procedure, function, or package. If a
procedure or function which belongs to a package is specified, then the entire package
is displayed.
Parameters
cname - name of the procedure or function
Generates

The source code of the specified function, procedure, or package.

H-20 Using Oracle Web Application Server™ Cartridges

owa_util.signature procedure

Syntax
owa_util.signature;
owa_util.signature (cname in varchar2);
Purpose
This procedure generates an HTML line followed by a signature line on theHTML
document. If a parameter is specified, the procedure also generates a hypertext link to
view the PL/SQL source for that procedure. The link calls the owa_util.showsource
procedure.
Parameters
cname - the function or procedure whose source you want to show
Generates

Without a parameter, the procedure generates a line that looks like the following:

This page was produced by the PL/SQL Agent on August 9, 1995 09:30

With a parameter, the procedure generates a signature line in the HTML document
that might look like the following:

This page was produced by the PL/SQL Agent on 6/14/95 09:30
View PL/SQL Source

H-21

owa_util.status_line procedure

Syntax
owa_util.status_line(
nstatus in integer,
creason in varchar2 DEFAULT NULL
bclose_header in boolean DEFAULT TRUE);
Purpose

This procedure sends a standard HTTP status code to the client. This procedure must
come before any htp.prin tor htp.prn calls so that the status code is returned as
part of the header, rather than as “content data”.

Parameters
nstatus - the status code
creason - the string for the status code

bclose_header - whether or not to close the HTTP header. If TRUE, two newlines are
sent, which closes the HTTP header. Otherwise, one newline is sent, and the HTTP
header is still open.

Generates

Status: <nstatus> <creason>\n\n

H-22 Using Oracle Web Application Server™ Cartridges

owa_util.tablePrint function

Syntax

Purpose

Parameters

Generates

Returns

Example

owa_util.tablePrint(

ctable in varchar2

cattributes in varchar2 DEFAULT NULL
ntable_type in integer DEFAULT HTML_TABLE
ccolumns in varchar2 DEFAULT *

cclauses in varchar2 DEFAULT NULL
ccol_aliases in varchar2 DEFAULT NULL
nrow_min in number DEFAULT 0
nrow_max in number DEFAULT NULL)

return boolean;

This function generates either preformatted or HTML tables (depending on the
capabilities of the user’s browser) from database tables. Note that RAW columns are
supported, but LONG RAW columns are not. References to LONG RAW columns will
print the result ‘Not Printable’. In this function, cattributes is the second, rather than the
last, parameter.

ctable - the database table
cattributes - other attributes to be included as-is in the tag

ntable_type - how to generate the table. Specify “HTML_TABLE to generate the table
using <TABLE> tags or “PRE_TABLFE to generate the table using the <PRE> tags

ccolumns - a comma-delimited list of columns from ctable to include in the generated
table

cclauses - WHERE or ORDER BY clauses, which let you specify which rows to retrieve
from the database table, and how to order them

ccol_aliases - a comma-delimited list of headings for the generated table
nrow_min - the first row, of those retrieved, to display

nrow_max - the last row, of those retrieved, to display

A preformatted or HTML table.

TRUE if there are more rows beyond the nrow_max requested, FALSE otherwise.

For browsers that do not support HTML tables, create the following procedure:

create or replace procedure showemps is
ignore_more boolean;

begin

ignore_more := owa_util.tablePrint(emp’, 'BORDER’,
OWA_UTIL.PRE_TABLE);

end;

H-23

and requesting a URL like this example: http://myhost:8080/ows-
bin/hr/plsql/showemps returns to the client:

<PRE>
| EMPNO |[ENAME |JOB IMGR |HIREDATE | SAL | COMM | DEPTNO |
7369 SMITH |CLERK | 7902 | 17-DEC-80 | 800 | |20 |

7499 ALLEN | SALESMAN| 7698 | 20-FEB-81 | 1600 | 300 |30 |

7521 WARD | SALESMAN| 7698 | 22-FEB-81 | 1250 | 500 | 30 |

7566] JONES | MANAGER | 7839 | 02-APR-81 | 2975 | | 20 |

7654] MARTIN | SALESMAN]| 7698 | 28-SEP-81 | 1250 | 1400| 30 |

7698 BLAKE | MANAGER | 7839 | 01-MAY-81 | 2850 | 130 |

7782| CLARK | MANAGER | 7839 | 09-JUN-81 | 2450 | |10 |

7788 SCOTT | ANALYST | 7566 | 09-DEC-82 | 3000 | |20 |
7839|KING | PRESIDENT| |17-NOV-81|5000 | |10 |

7844] TURNER | SALESMAN]| 7698 | 08-SEP-81 | 1500 [0 |30]

7876] ADAMS | CLERK | 7788 | 12-JAN-83 | 1100 | [20 |

7900| JAMES |CLERK | 7698 | 03-DEC-81|950 | 130

7902| FORD | ANALYST | 7566 | 03-DEC-81 | 3000 | | 20 |

7934] MILLER | CLERK | 7782 | 23-JAN-82 | 1300 | |10 |

</PRE>

To view just the employees in department 10, and only their employee ids, names, and
salaries, create the following procedure:

create or replace procedure showemps_10 is
ignore_more boolean;
begin
ignore_more := owa_util.tablePrint
(CEMP’, 'BORDER’, OWA_UTIL.PRE_TABLE,
‘empno, ename, sal’,
'where deptno=10 order by empno’,
’Eanployee Number, Name, Salary’);
end;

A request for a URL like http://myhost:8080/ows-bin/hr/plsgl/showemps_10 would
return the following to the client:

<PRE>

| Employee Number |[Name| Salary |

| 7782| CLARK| 2450 |
| 7839] KING | 5000 |
| 7934] MILLER | 1300 |

</PRE>

For browsers that support HTML tables, to view the department table in an HTML
table, create the following procedure:

create or replace procedure showdept is
ignore_more boolean;

begin
ignore_more := owa_util.tablePrint('dept’, 'BORDER’);
end;
A request for a URL like http://myhost:8080/ows-bin/hr/plsgl/showdep t would

return the following to the client:

<TABLE BORDER>

<TR>

<TH>DEPTNO</TH>

<TH>DNAME</TH>

<TH>LOC</TH>

</TR>

<TR>

<TD ALIGN="LEFT">10</TD>

<TD ALIGN="LEFT">ACCOUNTING</TD>

H-24 Using Oracle Web Application Server™ Cartridges

<TD ALIGN="LEFT">NEW YORK</TD>
</TR>

<TR>

<TD ALIGN="LEFT">20</TD>

<TD ALIGN="LEFT">RESEARCH</TD>
<TD ALIGN="LEFT">DALLAS</TD>
</TR>

<TR>

<TD ALIGN="LEFT">30</TD>

<TD ALIGN="LEFT">SALES</TD>

<TD ALIGN="LEFT">CHICAGO</TD>
</TR>

<TR>

<TD ALIGN="LEFT">40</TD>

<TD ALIGN="LEFT">OPERATIONS</TD>
<TD ALIGN="LEFT">BOSTON</TD>
</TR>

</TABLE>

which a web browser can format to look like this:

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

H-25

owa_util.todate function

Syntax
owa_util.todate(p_dateArray in dateType) return date;
Purpose
This function converts the owa_util.dateType data type to the standard Oracle
database DATE type.
Parameters
p_dateArray - the value to convert
Generates

A standard DATE.

H-26 Using Oracle Web Application Server™ Cartridges

owa_util.who_called_me procedure

Syntax

Purpose

Parameters

owa_util.who_called_me(

owner out varchar2
name out varchar2
lineno out number
caller_t out varchar2);

This procedure returns information (in the form of output parameters) about the
PL/SQL code unit that invoked it.

owner - the owner of the program unit

name - the name of the program unit. This is the name of the package, if the calling
program unit is wrapped in a package, and the name of the procedure or function if
the calling program unit is a standalone procedure or function. If the calling program
unit is part of an anonymous block, this is NULL.

lineno - the line number within the program unit where the call was made.

caller_t - the type of program unit that made the call. The possibilities are: package
body, anonymous block. procedure, and function. Procedure and function are used
only for standalone procedures and functions.

H-27

Using Oracle Web Application Server™ Cartridges

A

<A> A-6
with MAILTO A-59
<ADDRESS> A-5
<APPLET> A-7
applet tags (PL/SQL Cartridge) A-2
<AREA> A-8
authentication (PL/SQL Cartridge) 1-29
authorize function 1-31
custom authentication 1-31
authorize function (PL/SQL Cartridge) 1-31

B

<BASE> A-9
<BASEFONT> A-10
<BGSOUND> A-11
<BIG> A-12
<BLOCKQUOTE> A-13
<BODY> A-14
<BOLD> A-15

 A-53, A-63

C

<CAPTION> A-82
cartridges
Java Cartridge 2-1
PL/SQL Cartridge 1-1
cattributes parameter
use in passing exact text 1-13
<CENTER> A-16, A-17
CGl environment variables H-9, H-17
character formatting tags (PL/SQL Cartridge) A-4
<CITE> A-18

Index

<CODE> A-19
comments in HTML A-20
Content Service

Java Cartridge 2-12
cookies B-1

PL/SQL Cartridge 1-13, 1-24
crippled includes 3-2

D

data types supported in PL/SQL Cartridge 1-16
database access
Java Cartridge 2-12
LiveHTML Cartridge 3-2
Database Access Descriptor (DAD) 1-3
creating 1-5
Database Connection Descriptor (DCD) 1-4
<DD> A-25
debugging Java Cartridge 2-34
developing Java applications 2-4
<DFN> A-21
<DIR> A-22
<DIV> A-23
<DL> A-24
<DT> A-26
Dynamic HTML 2-25

E

 A-27
environment variables

retrieving in the PL/SQL Cartridge H-9
error-reporting levels in the PL/SQL Cartridge 1-29

F

 A-30

<FORM> A-32

form tags 1-11

form tags (PL/SQL Cartridge) A-2
<FRAME> A-44

frame tags (PL/SQL Cartridge) A-4
<FRAMESET> A-45

H

<H1> A-47
<HEAD> A-46
HTML

extending 1-24

form tags 1-11

version 3.2 A-1
<HTML> A-48
HTML comment A-20
HtmlStream 2-10
htp.address A-5
htp.anchor A-6
htp.anchor2 A-6
htp.appletclose A-7
htp.appletopen A-7
htp.area A-8
htp.base A-9
htp.basefont A-10
htp.bgsound A-11
htp.big A-12
htp.blockquoteClose A-13
htp.blockquoteOpen A-13
htp.bodyClose A-14
htp.bold A-15
htp.br A-63
htp.center A-16
htp.centerClose A-17
htp.centerOpen A-17
htp.cite A-18
htp.code A-19
htp.comment A-20
htp.dfn A-21
htp.dirlistClose A-22
htp.dirlistOpen A-22
htp.div A-23
htp.dlistClose A-24
htp.dlistDef A-25
htp.dlistOpen A-24
htp.dlistTerm A-26
htp.em A-27
htp.emphasis A-27
htp.fontClose A-30
htp.fontOpen A-30
htp.formCheckbox A-31
htp.formClose A-32

htp.formHidden A-33
htp.formlmage A-34
htp.formOpen A-32
htp.formPassword A-35
htp.formRadio A-36
htp.formReset A-37
htp.formSelectClose A-38
htp.formSelectOpen A-38
htp.formSelectOption A-39
htp.formSubmit A-40
htp.formText A-41
htp.formTextarea A-42
htp.formTextareaClose A-43
htp.frame A-44
htp.framesetClose A-45
htp.framesetOpen A-45
htp.headClose A-46
htp.header A-47
htp.headOpen A-46
htp.hr A-53
htp.htmIClose A-48
htp.htmlOpen A-48
htp.img A-49

htp.img2 A-49
htp.isindex A-50
htp.italic A-51

htp.kbd A-52
htp.keyboard A-52
htp.line A-53
htp.linkRel A-54
htp.linkRev A-55
htp.listHeader A-56
htp.listingClose A-57
htp.listingOpen A-57
htp.listitem A-58
htp.mailClose A-60
htp.mailto A-59
htp.mapOpen A-60
htp.menulistClose A-61
htp.menulistOpen A-61
htp.meta A-62

htp.nl A-63

htp.nobr A-64
htp.noframesClose A-65
htp.noframesOpen A-65
htp.olistClose A-66
htp.olistOpen A-66
htp.para A-67
htp.paragraph A-67
htp.param A-68
htp.plaintext A-69
htp.preClose A-70
htp.preOpen A-70
htp.print A-71
htp.prints A-72

htp.prn A-71

Using Oracle Web Application Server™ Cartridges

htp.ps A-72

htp.s A-73

htp.sample A-74
htp.script A-75
htp.small A-76
htp.strike A-77
htp.strong A-78
htp.style A-79

htp.sub A-80

htp.sup A-81
htp.tableCaption A-82
htp.tableClose A-85
htp.tableData A-83
htp.tableHeader A-84
htp.tableOpen A-85
htp.tableRowClose A-86
htp.tableRowOpen A-86
htp.teletype A-87
htp.textareaOpen A-43
htp.textareaOpen2 A-43
htp.title A-88
htp.ulistClose A-89
htp.ulistOpen A-89
htp.underline A-90
htp.variable A-91
htp.wbr A-92

HTTP request information 2-9
HTTP response information 2-10

<|> A-51
ICX Service
Java Cartridge 2-11
LiveHTML Cartridge 3-2
PL/SQL Cartridge 1-28
 A-49
<INPUT> (checkbox) A-31
<INPUT> (hidden) A-33
<INPUT> (image) A-34
<INPUT> (password) A-35
<INPUT> (radio) A-36
<INPUT> (reset) A-37
<INPUT (submit)> A-40
<INPUT (text)> A-41
IP address
retrieving in the PL/SQL Cartridge F-3
<ISINDEX> A-50

J

Java applets
referencing A-7

Java Cartridge 2-1
applet 2-2

application 2-2

application invocation 2-3
application structure 2-4
architecture 2-2

building an application 2-5
cartridge version 2-3

class hierarchy 2-26

Content Service 2-12

database access 2-12

database errors 2-18

debugging 2-34

developing applications 2-4
Dynamic HTML 2-25

example code 2-37

extending 2-33

Hello World example 2-7

HTTP request information 2-9
HTTP response information 2-10
ICX Service 2-11

JIT Compiler 2-23

Logger Service 2-12

oracle.html package 2-31
PL/SQL data type mapping 2-14
PL/SQL procedure mapping 2-15
PL/SQL stored procedures 2-17
security 2-21

Session Service 2-12

static HTML 2-5

supported Java versions 2-4
Transaction Service 2-11
troubleshooting 2-34

WRB services 2-10

Just-In-Time Compiler 2-23

<KBD> A-52

<LH> A-56

 A-58

<LINK> A-54, A-55

list tags (PL/SQL Cartridge) A-2
<LISTING> A-57

LiveHTML Cartridge

commands 3-3

crippled includes 3-2
database access 3-2
examples 3-7

file structure 3-2
Intercartridge Exchange 3-2
overview 3-1

Logger Service

Java Cartridge 2-12

Using Oracle Web Application Server™ Cartridges

M

<MAP> A-60
<MENU> A-61
<META> A-62

N

NLS extensions in PL/SQL Cartridge 1-20
<NOBR> A-64
<NOFRAMES> A-65

@)

 A-66

<OPTION> A-39

oracle.html package 2-31

overloading (PL/SQL Cartridge) 1-16
owa_cookie.cookie data type B-2
owa_cookie.get function B-3
owa_cookie.get_all procedure B-4
owa_cookie.remove procedure B-5
owa_cookie.send procedure B-6
owa_cookie.vc_arr data type B-2
owa_image.get_x function C-4
owa_image.get_y function C-5
owa_image.NULL_POINT package variable C-2
owa_image.point data type C-3
owa_opt_lock.checksum function D-3
owa_opt_lock.get_rowid function D-4
owa_opt_lock.store_values procedure D-5
owa_opt_lock.vcArray data type D-2
owa_opt_lock.verify_values function D-6
owa_pattern.amatch function E-2
owa_pattern.change function and procedure E-4
owa_pattern.change function or procedure 1-26
owa_pattern.getpat procedure E-6
owa_pattern.match function 1-26, E-7
owa_pattern.pattern data type E-9
owa_sec.get_client_hostname function F-2
owa_sec.get_client_ip function F-3
owa_sec.get_password function F-4
owa_sec.get_user_id function F-5
owa_sec.set_authorization procedure 1-31, F-6
owa_sec.set_protection_realm procedure F-7
owa_text.add2multi procedure G-2
owa_text.multi_line data type G-3
owa_text.new_row_list G-4
owa_text.print_multi procedure G-5
owa_text.print_row_list procedure G-6
owa_text.row_list data type G-7
owa_text.stream2multi procedure G-8
owa_text.vc_arr data type G-9
owa_util.bind_variables function H-3
owa_util.calendarprint procedure H-4

Index-4

owa_util.cellsprint procedure H-5
owa_util.choose_date procedure H-6
owa_util.dateType data type H-8
owa_util.get_cgi_env function H-9
owa_util.get_owa_service_path function H-10
owa_util.get_procedure function H-11
owa_util.http_header_close procedure H-12
owa_util.ident_arr data type H-13
owa_util.ip_address data type H-14
owa_util.listprint procedure H-15
owa_util. mime_header procedure H-16
owa_util.print_cgi_env procedure H-17
owa_util.redirect_url procedure H-18
owa_util.showpage procedure 1-35, H-19
owa_util.showsource procedure H-20
owa_util.signature procedure H-21
owa_util.status_line procedure H-22
owa_util.tablePrint function H-23
owa_util.todate function H-26
owa_util.who_called_me procedure H-27
owains.sql 1-10

P

<P> A-67
packages (PL/SQL Cartridge)
extending the htp and htf packages 1-24
htf package 1-10
htp package 1-10
installing 1-5
overview 1-9
owa package 1-11
owa_cookie package 1-13
owa_image package 1-12
owa_init package 1-11
owa_opt_lock package 1-13
owa_pattern package 1-12
owa_sec package 1-12
owa_text package 1-12
owa_util package 1-12
paragraph formatting tags (PL/SQL Cartridge) A-3
<PARAM> A-68
performance
PL/SQL Cartridge 1-33
PL/SQL Agent 1-3
configuring 1-6
PL/SQL Cartridge 1-1
applet tags A-2
authentication and security 1-29
character formatting tags A-4
cookies 1-24
creating a DAD 1-5
custom authentication 1-31
DAD 1-3
data types supported 1-16

Using Oracle Web Application Server™ Cartridges

dynamic username/password authentication 1-30 R

error-reporting levels 1-29

extending the htp and htf packages 1-24 regular expressions 1-27
form tags A-2

frame tags A-4

htf package 1-10 S
?(;F))(F;Cdkalg e281-10 <S> A-73
installing packages 1-5 <SAMP> A-74
< > A-
invoking 1-14, 4-8 SGSCCl?JTiItI;’/T A-75
I!fe e in the Java Cartridge 2-21
list tags A-2

in the PL/SQL Cartridge 1-29
<SELECT> A-38
Session Service
Java Cartridge 2-12
<SMALL> A-76
static HTML files in Java Cartridge 2-5
<STRIKE> A-77
strings
matching and manipulating in the PL/SQL Cartridge 1-
25

NLS extensions 1-20
overloading 1-16
overview 1-3

owa package 1-11
owa_cookie package 1-13
owa_image package 1-12
owa_init package 1-11
owa_opt_lock package 1-13
owa_pattern package 1-12

owa_sec package 1-12 regular expressions 1-27

owa_text package 1-12 A-78
owa_util package 1-12 <STYLE> A-79
packages overview 1-9 <SUB> A-80
paragraph formatting tags A-3 <SUP> A-81

parameters passed to subprograms 1-13
performance 1-33
PL/SQL Agent 1-3

System.out stream 2-10

PL/SQL Agent configuration 1-6

request processing 1-3 T

string matching and manipulation 1-25 <TABLE> A-85

subprograms summary A-1, B-1, C-1, D-1, E-1, F-1, G-1,table tags (PL/SQL Cartridge) A-3

H-1 <TD> A-83

table tags A-3 <TEXTAREA> A-42, A-43

tracing levels 1-36 <TH> A-84

transactions 1-21 <TITLE> A-88

troubleshooting 1-34 <TR> A-86

tutorial 1-5 tracing levels

URL details 1-14, 4-8 PL/SQL Cartridge 1-36

URL to invoke the PL/SQL Cartridge 1-3 Transaction Service

variables with multiple values 1-17 Java Cartridge 2-11

virtual paths 1-7 PL/SQL Cartridge 1-21
PL/SQL table in PL/SQL Cartridge 1-17 troubleshooting Java Cartridge 2-34
PL/SQL Web Toolkit <TT> A-87

customizing 1-24
htf package A-1

htp package A-1 U
installation 1-10
pl2java 2-13 <U> A-90
<PLAINTEXT> A-69 A-89
<PRE> A-70
V
<VAR> A-91

Index-5 Using Oracle Web Application Server™ Cartridges

vc_arr data type B-2

W

<WBR> A-92

Index-6 Using Oracle Web Application Server™ Cartridges

	1 Using the PL/SQL Cartridge
	Overview
	Tutorial
	1. Installing the PL/SQL Cartridge Packages and Cr...
	2. Configuring the PL/SQL Agent
	3. Checking the Virtual Path Mapping
	4. Stopping and Restarting the Listener
	5. Creating and Loading the Stored Procedure onto ...
	6. Creating an HTML Page to Invoke the Procedure

	Packages Overview
	Installing the PL/SQL Web Toolkit
	htf and htp Packages
	owa Package
	owa_init Package
	owa_sec Package
	owa_util Package
	owa_text Package
	owa_pattern Package
	owa_image Package
	owa_cookie Package
	owa_opt_lock Package
	Parameters Passed into Procedures and Functions

	Invocation
	Life Cycle of the PL/SQL Cartridge
	Supported Data Types
	Overloading
	Variables with Multiple Values
	NLS Extensions
	PL/SQL Cartridge and Applets
	Transactions
	How Does It Work?
	Configuring the PL/SQL Agent to Use Transaction Se...
	Example

	Sessions/Cookies
	Customized Extensions to HTP and HTF Packages
	String Matching and Manipulation
	owa_pattern.match Function
	owa_pattern.change Function or Procedure
	Regular Expressions

	ICX
	Error-Reporting Levels
	Authentication and Security
	Dynamic Username/Password Authentication
	Custom Authentication
	Performance
	Troubleshooting
	Problems with Invoking Your PL/SQL Application
	Looking at Error Messages Generated by the Databas...
	Unhandled Exceptions
	Looking at the HTML Generated by Your PL/SQL Appli...
	Setting Tracing Levels

	2 Using the Java Cartridge
	Overview
	Architecture
	Java Application vs. Applet
	Java Cartridge
	Invocation of the Application
	Supported Versions of Java

	Developing Web Applications in Java
	Structure of a Java Web Application
	Designing a Java Web Application with Static HTML ...
	Building the Java Application
	Adding and Running the Application into the Web Ap...

	Tutorial
	Creating your First Java Application
	Creating an Oracle Java Application

	Developer’s Guide
	Accessing HTTP Request Information
	Generating HTTP Response Information
	HtmlStream vs. System.out Stream
	Accessing WRB Services
	Sessions
	Accessing a Database
	Maintaining Persistent State
	Java Runtime Configuration Flags
	Security
	NLS Support
	Just-In-Time Compiler
	Performance
	Dynamic HTML Generation
	Class Hierarchy
	HTML Features: A Summary
	Examples
	Extending the oracle.html Package
	Using Dynamic Content
	Extending the Java Cartridge

	Troubleshooting and Debugging
	Web Request Broker
	The Java Cartridge
	Java Web Applications
	No Java Debugger
	Shutting Down the Java VM
	Logging Information
	Exception Handling

	Examples
	main()
	initialize()
	saveClientInfo()
	retrieveClientInfo()
	getHTTPInfo()
	printHTML()
	generateBrowserReport()
	PL/SQL Tables

	3 Using the LiveHTML Cartridge
	Overview
	LiveHTML File Structure
	Limiting Use of LiveHTML (“Crippled” Includes)
	Database Access via LiveHTML
	LiveHTML and Intercartridge Exchange Service

	LiveHTML Commands
	Command Format
	LiveHTML Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	request

	LiveHTML Examples
	Displaying Date and Time
	Getting Information About the Current File
	Getting Information on Other Files
	Getting Information on the Client’s Browser
	Providing Host and Server Information
	Using LiveHTML to Send an ICX Request

	4 Using the Perl Cartridge
	Overview
	How the Perl Cartridge Improves Performance
	Versions of Perl Supported

	Tutorial
	1. Writing the Perl Script
	2. Adding a Virtual Path for the Perl Cartridge
	3. Stopping and Restarting the Listener
	4. Creating an HTML Page to Invoke the Perl Script...

	Configuration
	Virtual Paths
	Number of Perl Cartridge Instances
	Number of Requests Processed by a Cartridge Instan...
	Logging
	Cartridge Configuration Parameters
	Files in the Distribution
	Using %ORAWEB_HOME%\perl as Your Main Perl Install...

	Invocation
	Writing Perl Scripts for the Perl Cartridge
	Variable Scoping
	Namespace Collisions
	No Need for the #! Line
	System Resources

	Developing Perl Extension Modules
	Troubleshooting
	Problems with Invoking Your Perl Script
	Log Files
	Unhandled Errors

	A The htp and htf Packages
	htp.address
	htp.anchor, htp.anchor2
	htp.appletopen, htp.appletclose
	htp.area
	htp.base
	htp.basefont
	htp.bgsound
	htp.big
	htp.blockquoteOpen, htp.blockquoteClose
	htp.bodyOpen, htp.bodyClose
	htp.bold
	htp.center
	htp.centerOpen, htp.centerClose
	htp.cite
	htp.code
	htp.comment
	htp.dfn
	htp.dirlistOpen, htp.dirlistClose
	htp.div
	htp.dlistOpen, htp.dlistClose
	htp.dlistDef
	htp.dlistTerm
	htp.emphasis, htp.em
	htf.escape_sc
	htf.escape_url
	htp.fontOpen, htp.fontClose
	htp.formCheckbox
	htp.formOpen, htp.formClose
	htp.formHidden
	htp.formImage
	htp.formPassword
	htp.formRadio
	htp.formReset
	htp.formSelectOpen, htp.formSelectClose
	htp.formSelectOption
	htp.formSubmit
	htp.formText
	htp.formTextarea, htp.formTextarea2
	htp.formTextareaOpen, htp.formTextareaOpen2, htp.f...
	htp.frame
	htp.framesetOpen, htp.framesetClose
	htp.headOpen, htp.headClose
	htp.header
	htp.htmlOpen, htp.htmlClose
	htp.img, htp.img2
	htp.isindex
	htp.italic
	htp.keyboard, htp.kbd
	htp.line, htp.hr
	htp.linkRel
	htp.linkRev
	htp.listHeader
	htp.listingOpen, htp.listingClose
	htp.listItem
	htp.mailto
	htp.mapOpen, htp.mapClose
	htp.menulistOpen, htp.menulistClose
	htp.meta
	htp.nl, htp.br
	htp.nobr
	htp.noframesOpen, htp.noframesClose
	htp.olistOpen, htp.olistClose
	htp.para, htp.paragraph
	htp.param
	htp.plaintext
	htp.preOpen, htp.preClose
	htp.print, htp.prn
	htp.prints, htp.ps
	htp.s
	htp.sample
	htp.script
	htp.small
	htp.strike
	htp.strong
	htp.style
	htp.sub
	htp.sup
	htp.tableCaption
	htp.tableData
	htp.tableHeader
	htp.tableOpen, htp.tableClose
	htp.tableRowOpen, htp.tableRowClose
	htp.teletype
	htp.title
	htp.ulistOpen, htp.ulistClose
	htp.underline
	htp.variable
	htp.wbr

	B The owa_cookie Package
	owa_cookie.cookie data type
	owa_cookie.get function
	owa_cookie.get_all procedure
	owa_cookie.remove procedure
	owa_cookie.send procedure

	C The owa_image Package
	owa_image.NULL_POINT package variable
	owa_image.point data type
	owa_image.get_x function
	owa_image.get_y function

	D The owa_opt_lock Package
	owa_opt_lock.vcArray data type
	owa_opt_lock.checksum function
	owa_opt_lock.get_rowid function
	owa_opt_lock.store_values procedure
	owa_opt_lock.verify_values function

	E The owa_pattern Package
	owa_pattern.amatch function
	owa_pattern.change function and procedure
	owa_pattern.getpat procedure
	owa_pattern.match function
	owa_pattern.pattern data type

	F The owa_sec Package
	owa_sec.get_client_hostname function
	owa_sec.get_client_ip function
	owa_sec.get_password function
	owa_sec.get_user_id function
	owa_sec.set_authorization procedure
	owa_sec.set_protection_realm procedure

	G The owa_text Package
	owa_text.add2multi procedure
	owa_text.multi_line data type
	owa_text.new_row_list
	owa_text.print_multi procedure
	owa_text.print_row_list procedure
	owa_text.row_list data type
	owa_text.stream2multi procedure
	owa_text.vc_arr data type

	H The owa_util Package
	owa_util.bind_variables function
	owa_util.calendarprint procedure
	owa_util.cellsprint procedure
	owa_util.choose_date procedure
	owa_util.dateType data type
	owa_util.get_cgi_env function
	owa_util.get_owa_service_path function
	owa_util.get_procedure function
	owa_util.http_header_close procedure
	owa_util.ident_arr data type
	owa_util.ip_address data type
	owa_util.listprint procedure
	owa_util.mime_header procedure
	owa_util.print_cgi_env procedure
	owa_util.redirect_url procedure
	owa_util.showpage procedure
	owa_util.showsource procedure
	owa_util.signature procedure
	owa_util.status_line procedure
	owa_util.tablePrint function
	owa_util.todate function
	owa_util.who_called_me procedure

